Type4Py: Deep Similarity Learning-Based Type Inference for Python

Overview

Type4Py: Deep Similarity Learning-Based Type Inference for Python

GH Workflow

This repository contains the implementation of Type4Py and instructions for re-producing the results of the paper.

Dataset

For Type4Py, we use the ManyTypes4Py dataset. You can download the latest version of the dataset here. Also, note that the dataset is already de-duplicated.

Code De-deduplication

If you want to use your own dataset, it is essential to de-duplicate the dataset by using a tool like CD4Py.

Installation Guide

Requirements

  • Linux-based OS
  • Python 3.5 or newer
  • An NVIDIA GPU with CUDA support

Quick Install

git clone https://github.com/saltudelft/type4py.git && cd type4py
pip install .

Usage Guide

Follow the below steps to train and evaluate the Type4Py model.

1. Extraction

NOTE: Skip this step if you're using the ManyTypes4Py dataset.

$ type4py extract --c $DATA_PATH --o $OUTPUT_DIR --d $DUP_FILES --w $CORES

Description:

  • $DATA_PATH: The path to the Python corpus or dataset.
  • $OUTPUT_DIR: The path to store processed projects.
  • $DUP_FILES: The path to the duplicate files, i.e., the *.jsonl.gz file produced by CD4Py. [Optional]
  • $CORES: Number of CPU cores to use for processing projects.

2. Preprocessing

$ type4py preprocess --o $OUTPUT_DIR --l $LIMIT

Description:

  • $OUTPUT_DIR: The path that was used in the first step to store processed projects. For the MT4Py dataset, use the directory in which the dataset is extracted.
  • $LIMIT: The number of projects to be processed. [Optional]

3. Vectorizing

$ type4py vectorize --o $OUTPUT_DIR

Description:

  • $OUTPUT_DIR: The path that was used in the previous step to store processed projects.

4. Learning

$ type4py learn --o $OUTPUT_DIR --c --p $PARAM_FILE

Description:

  • $OUTPUT_DIR: The path that was used in the previous step to store processed projects.

  • --c: Trains the complete model. Use type4py learn -h to see other configurations.

  • --p $PARAM_FILE: The path to user-provided hyper-parameters for the model. See this file as an example. [Optional]

5. Testing

$ type4py predict --o $OUTPUT_DIR --c

Description:

  • $OUTPUT_DIR: The path that was used in the first step to store processed projects.
  • --c: Predicts using the complete model. Use type4py predict -h to see other configurations.

6. Evaluating

$ type4py eval --o $OUTPUT_DIR --t c --tp 10

Description:

  • $OUTPUT_DIR: The path that was used in the first step to store processed projects.
  • --t: Evaluates the model considering different prediction tasks. E.g., --t c considers all predictions tasks, i.e., parameters, return, and variables. [Default: c]
  • --tp 10: Considers Top-10 predictions for evaluation. For this argument, You can choose a positive integer between 1 and 10. [Default: 10]

Use type4py eval -h to see other options.

Converting Type4Py to ONNX

To convert the pre-trained Type4Py model to the ONNX format, use the following command:

$ type4py to_onnx --o $OUTPUT_DIR

Description:

  • $OUTPUT_DIR: The path that was used in the usage section to store processed projects and the model.

VSCode Extension

vsm-version

Type4Py can be used in VSCode, which provides ML-based type auto-completion for Python files. The Type4Py's VSCode extension can be installed from the VS Marketplace here.

Type4Py Server

GH Workflow

The Type4Py server is deployed on our server, which exposes a public API and powers the VSCode extension. However, if you would like to deploy the Type4Py server on your own machine, you can adapt the server code here. Also, please feel free to reach out to us for deployment, using the pre-trained Type4Py model and how to train your own model by creating an issue.

Citing Type4Py

@article{mir2021type4py,
  title={Type4Py: Deep Similarity Learning-Based Type Inference for Python},
  author={Mir, Amir M and Latoskinas, Evaldas and Proksch, Sebastian and Gousios, Georgios},
  journal={arXiv preprint arXiv:2101.04470},
  year={2021}
}
Owner
Software Analytics Lab
Software Analytics Lab @ TU Delft
Software Analytics Lab
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022