OCR Post Correction for Endangered Language Texts

Overview

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transactions of the Association for Computational Linguistics (TACL)!

Check out the paper here.

OCR Post Correction for Endangered Language Texts

This repository contains code for models and experiments from the paper "OCR Post Correction for Endangered Language Texts".

Textual data in endangered languages is often found in formats that are not machine-readable, including scanned images of paper books. Extracting the text is challenging because there is typically no annotated data to train an OCR system for each endangered language. Instead, we focus on post-correcting the OCR output from a general-purpose OCR system.

📌 In the paper, we present a dataset containing annotations for documents in three critically endangered languages: Ainu, Griko, Yakkha.

📌 Our model reduces the recognition error rate by 34% on average, over a state-of-the-art OCR system.

Learn more about the paper here!

OCR Post-Correction

The goal of OCR post-correction is to automatically correct errors in the text output from an existing OCR system.

The existing OCR system is used to obtain a first pass transcription of the input image (example below in the endangered language Griko):

First pass OCR transcription

The incorrectly recognized characters in the first pass are then corrected by the post-correction model.

Corrected transcription

Model

As seen in the example above, OCR post-correction is a text-based sequence-to-sequence task.

📌 We use a character-level encoder-decoder architecture with attention and add several adaptations for the low-resource setting. The paper has all the details!

📌 The model is trained in a supervised manner. The training data consists of first pass OCR outputs as the source with corresponding manually corrected transcriptions as the target.

📌 Some books that contain texts in endangered languages also contain translations of the text in another (usually high-resource) language. We incorporate an additional encoder in the model, with a multisource framework, to use the information from these translations if they are available.

We provide instructions for both single-source and multisource models:

  • The single-source model can be used for almost any document and is significantly easier to set up.

  • The multisource model can only be used if translations are available.

Dataset

This repository contains a sample from our dataset in sample_dataset, which you can use to train the post-correction model. Get the full dataset here!

However, this repository can be used to train OCR post-correction models for documents in any language!

🚀 If you want to use our model with a new set of documents, construct a dataset by following the steps here.

🚀 We'd love to hear about the new datasets and models you build: send us an email at [email protected]!

Running Experiments

Once you have a suitable dataset (e.g., sample_dataset or your own dataset), you can train a model and run experiments on OCR post-correction.

If you have your own dataset, you can use the utils/prepare_data.py script to create train, development, and test splits (see the last step here).

The steps are described below, illustrated with sample_dataset/postcorrection. If using another dataset, simply change the experiment settings to point to your dataset and run the same scripts.

Requirements

Python 3+ is required. Pip can be used to install the packages:

pip install -r postcorr_requirements.txt

Training

The process of training the post-correction model has two main steps:

  • Pretraining with first pass OCR outputs.
  • Training with manually corrected transcriptions in a supervised manner.

For a single-source model, modify the experimental settings in train_single-source.sh to point to the appropriate dataset and desired output folder. It is currently set up to use sample_dataset.

Then run

bash train_single-source.sh

For multisource, use train_multi-source.sh.

Log files and saved models are written to the user-specified experiment folder for both the pretraining and training steps. For a list of all available hyperparameters and options, look at postcorrection/constants.py and postcorrection/opts.py.

Testing

For testing with a single-source model, modify the experimental settings in test_single-source.sh. It is currently set up to use sample_dataset.

Then run

bash test_single-source.sh

For multisource, use test_multi-source.sh.

Citation

Please cite our paper if this repository was useful.

@inproceedings{rijhwani-etal-2020-ocr,
    title = "{OCR} {P}ost {C}orrection for {E}ndangered {L}anguage {T}exts",
    author = "Rijhwani, Shruti  and
      Anastasopoulos, Antonios  and
      Neubig, Graham",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.478",
    doi = "10.18653/v1/2020.emnlp-main.478",
    pages = "5931--5942",
}

License

Owner
Shruti Rijhwani
Ph.D. student at CMU, working on natural language processing.
Shruti Rijhwani
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( đŸŽŦ promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Help you understand Manual and w/ Clutch point while driving.

įŽ€äŊ“中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022