PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Overview

Soft DTW Loss Function for PyTorch in CUDA

This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch supported computation, CUDA-friendly, and feasible to use as a final loss. I can confirm that you can train a (sequential) model with this as a final loss! The following image shows training logs of a TTS model using the Soft-DTW Loss Function.

There are some previous implementations:

  1. mblondel's soft-dtw
  2. lyprince's sdtw_pytorch
  3. Maghoumi's pytorch-softdtw-cuda

But they are either not supported by CUDA-friendly batch computation or not considering the jacobean w.r.t input matrix, which is necessary to be used as a final loss in recent deep learning frameworks. In the current implementation, all conditions are satisfied.

Usage

Same as Maghoumi's pytorch-softdtw-cuda:

from sdtw_cuda_loss import SoftDTW

# Create the sequences
batch_size, len_x, len_y, dims = 8, 15, 12, 5
x = torch.rand((batch_size, len_x, dims), requires_grad=True)
y = torch.rand((batch_size, len_y, dims))

# Create the "criterion" object
sdtw = SoftDTW(use_cuda=True, gamma=0.1)

# Compute the loss value
loss = sdtw(x, y)  # Just like any torch.nn.xyzLoss()

# Aggregate and call backward()
loss.mean().backward()

But the backward will compute the gradient w.r.t input target sequence x (which is not considered in the previous work).

Note

In the current implementation, only use_cuda=True is supported. But you can easily implement the CPU version as in Maghoumi's pytorch-softdtw-cuda.

Citation

@misc{lee2021soft_dtw_loss,
  author = {Lee, Keon},
  title = {Soft-DTW-Loss},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/keonlee9420/Soft-DTW-Loss}}
}
You might also like...
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

[CVPR 2022] Official code for the paper:
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Comments
  • Does this supports multi-gpu training?

    Does this supports multi-gpu training?

    Thanks for sharing impl of soft-dtw, I can use it in single-gpu env,but can't use it in multi-gpu envs.Currently, it doesn't support multi-gpu training?

    opened by mayfool 2
  • how to use dtw-loss to fit a curve?

    how to use dtw-loss to fit a curve?

    hello, I tried to fit a curve (discrete points) using Soft-DTW-Loss as a loss function. But the loss does not converge to the exact result in the end. Is there something wrong with the way I am using it? The code is as follows:

    if name == "main":

    batch_size = 1
    len_x = 15
    len_predict = 10
    dims = 1
    
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    x = torch.unsqueeze(torch.linspace(1, 4, steps=len_x, requires_grad=True), dim=0)
    y = x ** 2
    y = y.view(1, len_x, 1)
    x = x.view(1, len_x, 1)
    
    #(batch,length,dims)---->(1,15,2)
    truth_points = torch.cat((y, x), dim=2).cuda()
    
    #(1,20)
    input = torch.unsqueeze(torch.linspace(1, 4, steps=len_predict*2, requires_grad=True), dim=0).cuda()
    
    
    class testNN(torch.nn.Module):
        def __init__(self):
            super(testNN, self).__init__()
            self.layer = nn.Sequential(
                nn.Linear(20, 50),
                nn.ReLU(),
                nn.Linear(50, 200),
                nn.ReLU(),
                nn.Linear(200, 50),
                nn.ReLU(),
                nn.Linear(50, 20),
                nn.ReLU(),
            )
        def forward(self, x):
            x = self.layer(x)
            return x
    
    
    test = testNN()
    test = test.to(device)
    
    loss_function = SoftDTW(use_cuda=True, gamma=0.01, normalize=False)
    optimizer = torch.optim.Adam(test.parameters(), lr=0.01)
    
    
    for epoch in range(1000):
    
    
        predict = test(input)
        #(1,20) reshape to (1,10,2)
        predict = predict.reshape(1, len_predict, 2)
        loss = loss_function(predict, truth_points)
        optimizer.zero_grad()
        loss.mean().backward(retain_graph=True)
        optimizer.step()
    
    
        if epoch % 10 == 0:
            print("epoch : %d | loss : %f" % (epoch, loss))
            plt_predict = predict.cpu().detach().numpy()
            # print(plt_predict)
            plt_predict = plt_predict.reshape(1, len_predict, 2)
            print(plt_predict[0, :, 0])
            print(plt_predict[0, :, 1])
    
    opened by visionlyx 0
Releases(v1.0.0)
Owner
Keon Lee
Expressive Speech Synthesis | Conversational AI | Open-domain Dialog | NLP | Generative Models | Empathic Computing | HCI
Keon Lee
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022