Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Overview

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

This repository hosts the code related to the paper:

Marco Rosano, Antonino Furnari, Luigi Gulino, Corrado Santoro and Giovanni Maria Farinella, "Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation". Submitted to "Robotics and Autonomous Systems" (RAS), 2022.

For more details please see the project web page at https://iplab.dmi.unict.it/EmbodiedVN.

Overview

This code is built on top of the Habitat-api/Habitat-lab project. Please see the Habitat project page for more details.

This repository provides the following components:

  1. The implementation of the proposed tool, integrated with Habitat, to train visual navigation models on synthetic observations and test them on realistic episodes containing real-world images. This allows the estimation of real-world performance, avoiding the physical deployment of the robotic agent;

  2. The official PyTorch implementation of the proposed visual navigation models, which follow different strategies to combine a range of visual mid-level representations

  3. the synthetic 3D model of the proposed environment, acquired using the Matterport 3D scanner and used to perform the navigation episodes at train and test time;

  4. the photorealistic 3D model that contains real-world images of the proposed environment, labeled with their pose (X, Z, Angle). The sparse 3D reconstruction was performed using the COLMAP Structure from Motion tool, to then be aligned with the Matterport virtual 3D map.

  5. An integration with CycleGAN to train and evaluate navigation models with Habitat on sim2real adapted images.

  6. The checkpoints of the best performing navigation models.

Installation

Requirements

  • Python >= 3.7, use version 3.7 to avoid possible issues.
  • Other requirements will be installed via pip in the following steps.

Steps

  1. (Optional) Create an Anaconda environment and install all on it ( conda create -n fusion-habitat python=3.7; conda activate fusion-habitat )

  2. Install the Habitat simulator following the official repo instructions .The development and testing was done on commit bfbe9fc30a4e0751082824257d7200ad543e4c0e, installing the simulator "from source", launching the ./build.sh --headless --with-cuda command (guide). Please consider to follow these suggestions if you encounter issues while installing the simulator.

  3. Install the customized Habitat-lab (this repo):

    git clone https://github.com/rosanom/mid-level-fusion-nav.git
    cd mid-level-fusion-nav/
    pip install -r requirements.txt
    python setup.py develop --all # install habitat and habitat_baselines
    
  4. Download our dataset (journal version) from here, and extract it to the repository folder (mid-level-fusion-nav/). Inside the data folder you should see this structure:

    datasets/pointnav/orangedev/v1/...
    real_images/orangedev/...
    scene_datasets/orangedev/...
    orangedev_checkpoints/...
    
  5. (Optional, to check if the software works properly) Download the test scenes data and extract the zip file to the repository folder (mid-level-fusion-nav/). To verify that the tool was successfully installed, run python examples/benchmark.py or python examples/example.py.

Data Structure

All data can be found inside the mid-level-fusion-nav/data/ folder:

  • the datasets/pointnav/orangedev/v1/... folder contains the generated train and validation navigation episodes files;
  • the real_images/orangedev/... folder contains the real world images of the proposed environment and the csv file with their pose information (obtained with COLMAP);
  • the scene_datasets/orangedev/... folder contains the 3D mesh of the proposed environment.
  • orangedev_checkpoints/ is the folder where the checkpoints are saved during training. Place the checkpoint file here if you want to restore the training process or evaluate the model. The system will load the most recent checkpoint file.

Config Files

There are two configuration files:

habitat_domain_adaptation/configs/tasks/pointnav_orangedev.yaml

and

habitat_domain_adaptation/habitat_baselines/config/pointnav/ddppo_pointnav_orangedev.yaml.

In the first file you can change the robot's properties, the sensors used by the agent and the dataset used in the experiment. You don't have to modify it.

In the second file you can decide:

  1. if evaluate the navigation models using RGB or mid-level representations;
  2. the set of mid-level representations to use;
  3. the fusion architecture to use;
  4. if train or evaluate the models using real images, or using the CycleGAN sim2real adapted observations.
...
EVAL_W_REAL_IMAGES: True
EVAL_CKPT_PATH_DIR: "data/orangedev_checkpoints/"

SIM_2_REAL: False #use cycleGAN for sim2real image adaptation?

USE_MIDLEVEL_REPRESENTATION: True
MIDLEVEL_PARAMS:
ENCODER: "simple" # "simple", SE_attention, "mid_fusion", ...
FEATURE_TYPE: ["normal"] #["normal", "keypoints3d","curvature", "depth_zbuffer"]
...

CycleGAN Integration (baseline)

In order to use CycleGAN on Habitat for the sim2real domain adaptation during train or evaluation, follow the steps suggested in the repository of our previous resease.

Train and Evaluation

To train the navigation model using the DD-PPO RL algorithm, run:

sh habitat_baselines/rl/ddppo/single_node_orangedev.sh

To evaluate the navigation model using the DD-PPO RL algorithm, run:

sh habitat_baselines/rl/ddppo/single_node_orangedev_eval.sh

For more information about DD-PPO RL algorithm, please check out the habitat-lab dd-ppo repo page.

License

The code in this repository, the 3D models and the images of the proposed environment are MIT licensed. See the LICENSE file for details.

The trained models and the task datasets are considered data derived from the correspondent scene datasets.

Acknowledgements

This research is supported by OrangeDev s.r.l, by Next Vision s.r.l, the project MEGABIT - PIAno di inCEntivi per la RIcerca di Ateneo 2020/2022 (PIACERI) – linea di intervento 2, DMI - University of Catania, and the grant MIUR AIM - Attrazione e Mobilità Internazionale Linea 1 - AIM1893589 - CUP E64118002540007.

Owner
First Person Vision @ Image Processing Laboratory - University of Catania
First Person Vision @ Image Processing Laboratory - University of Catania
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022