Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Overview

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

This repository hosts the code related to the paper:

Marco Rosano, Antonino Furnari, Luigi Gulino, Corrado Santoro and Giovanni Maria Farinella, "Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation". Submitted to "Robotics and Autonomous Systems" (RAS), 2022.

For more details please see the project web page at https://iplab.dmi.unict.it/EmbodiedVN.

Overview

This code is built on top of the Habitat-api/Habitat-lab project. Please see the Habitat project page for more details.

This repository provides the following components:

  1. The implementation of the proposed tool, integrated with Habitat, to train visual navigation models on synthetic observations and test them on realistic episodes containing real-world images. This allows the estimation of real-world performance, avoiding the physical deployment of the robotic agent;

  2. The official PyTorch implementation of the proposed visual navigation models, which follow different strategies to combine a range of visual mid-level representations

  3. the synthetic 3D model of the proposed environment, acquired using the Matterport 3D scanner and used to perform the navigation episodes at train and test time;

  4. the photorealistic 3D model that contains real-world images of the proposed environment, labeled with their pose (X, Z, Angle). The sparse 3D reconstruction was performed using the COLMAP Structure from Motion tool, to then be aligned with the Matterport virtual 3D map.

  5. An integration with CycleGAN to train and evaluate navigation models with Habitat on sim2real adapted images.

  6. The checkpoints of the best performing navigation models.

Installation

Requirements

  • Python >= 3.7, use version 3.7 to avoid possible issues.
  • Other requirements will be installed via pip in the following steps.

Steps

  1. (Optional) Create an Anaconda environment and install all on it ( conda create -n fusion-habitat python=3.7; conda activate fusion-habitat )

  2. Install the Habitat simulator following the official repo instructions .The development and testing was done on commit bfbe9fc30a4e0751082824257d7200ad543e4c0e, installing the simulator "from source", launching the ./build.sh --headless --with-cuda command (guide). Please consider to follow these suggestions if you encounter issues while installing the simulator.

  3. Install the customized Habitat-lab (this repo):

    git clone https://github.com/rosanom/mid-level-fusion-nav.git
    cd mid-level-fusion-nav/
    pip install -r requirements.txt
    python setup.py develop --all # install habitat and habitat_baselines
    
  4. Download our dataset (journal version) from here, and extract it to the repository folder (mid-level-fusion-nav/). Inside the data folder you should see this structure:

    datasets/pointnav/orangedev/v1/...
    real_images/orangedev/...
    scene_datasets/orangedev/...
    orangedev_checkpoints/...
    
  5. (Optional, to check if the software works properly) Download the test scenes data and extract the zip file to the repository folder (mid-level-fusion-nav/). To verify that the tool was successfully installed, run python examples/benchmark.py or python examples/example.py.

Data Structure

All data can be found inside the mid-level-fusion-nav/data/ folder:

  • the datasets/pointnav/orangedev/v1/... folder contains the generated train and validation navigation episodes files;
  • the real_images/orangedev/... folder contains the real world images of the proposed environment and the csv file with their pose information (obtained with COLMAP);
  • the scene_datasets/orangedev/... folder contains the 3D mesh of the proposed environment.
  • orangedev_checkpoints/ is the folder where the checkpoints are saved during training. Place the checkpoint file here if you want to restore the training process or evaluate the model. The system will load the most recent checkpoint file.

Config Files

There are two configuration files:

habitat_domain_adaptation/configs/tasks/pointnav_orangedev.yaml

and

habitat_domain_adaptation/habitat_baselines/config/pointnav/ddppo_pointnav_orangedev.yaml.

In the first file you can change the robot's properties, the sensors used by the agent and the dataset used in the experiment. You don't have to modify it.

In the second file you can decide:

  1. if evaluate the navigation models using RGB or mid-level representations;
  2. the set of mid-level representations to use;
  3. the fusion architecture to use;
  4. if train or evaluate the models using real images, or using the CycleGAN sim2real adapted observations.
...
EVAL_W_REAL_IMAGES: True
EVAL_CKPT_PATH_DIR: "data/orangedev_checkpoints/"

SIM_2_REAL: False #use cycleGAN for sim2real image adaptation?

USE_MIDLEVEL_REPRESENTATION: True
MIDLEVEL_PARAMS:
ENCODER: "simple" # "simple", SE_attention, "mid_fusion", ...
FEATURE_TYPE: ["normal"] #["normal", "keypoints3d","curvature", "depth_zbuffer"]
...

CycleGAN Integration (baseline)

In order to use CycleGAN on Habitat for the sim2real domain adaptation during train or evaluation, follow the steps suggested in the repository of our previous resease.

Train and Evaluation

To train the navigation model using the DD-PPO RL algorithm, run:

sh habitat_baselines/rl/ddppo/single_node_orangedev.sh

To evaluate the navigation model using the DD-PPO RL algorithm, run:

sh habitat_baselines/rl/ddppo/single_node_orangedev_eval.sh

For more information about DD-PPO RL algorithm, please check out the habitat-lab dd-ppo repo page.

License

The code in this repository, the 3D models and the images of the proposed environment are MIT licensed. See the LICENSE file for details.

The trained models and the task datasets are considered data derived from the correspondent scene datasets.

Acknowledgements

This research is supported by OrangeDev s.r.l, by Next Vision s.r.l, the project MEGABIT - PIAno di inCEntivi per la RIcerca di Ateneo 2020/2022 (PIACERI) – linea di intervento 2, DMI - University of Catania, and the grant MIUR AIM - Attrazione e Mobilità Internazionale Linea 1 - AIM1893589 - CUP E64118002540007.

Owner
First Person Vision @ Image Processing Laboratory - University of Catania
First Person Vision @ Image Processing Laboratory - University of Catania
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022