Learning Representational Invariances for Data-Efficient Action Recognition

Overview

Learning Representational Invariances for Data-Efficient Action Recognition

Official PyTorch implementation for Learning Representational Invariances for Data-Efficient Action Recognition. We follow the code structure of MMAction2.

See the project page for more details.

Installation

We use PyTorch-1.6.0 with CUDA-10.2 and Torchvision-0.7.0.

Please refer to install.md for installation.

Data Preparation

First, please download human detection results and put them in the corresponding folder under data: UCF-101, HMDB-51, Kinetics-100.

Second, please refer to data_preparation.md to prepare raw frames of UCF-101 and HMDB-51. (Instructions of extracting frames from Kinetics-100 will be available soon.)

(Optional) You can download the pre-extracted ImageNet scores: UCF-101, HMDB-51.

Training

We use 8 RTX2080 Ti GPUs to run our experiments. You would need to adjust your training schedule accordingly if you have less GPUs. Please refer to here.

Supervised learning

PORT=${PORT:-29500}

python -m torch.distributed.launch \
--nproc_per_node=8 \
--master_port=$PORT \
tools/train.py \
$CONFIG \
--launcher pytorch ${@:3} \
--validate

You need to replace $CONFIG with the actual config file:

  • For supervised baseline, please use config files in configs/recognition/r2plus1d.
  • For strongly-augmented supervised learning, please use config files in configs/supervised_aug.

Semi-supervised learning

PORT=${PORT:-29500}

python -m torch.distributed.launch \
--nproc_per_node=8 \
--master_port=$PORT \
tools/train_semi.py \
$CONFIG \
--launcher pytorch ${@:3} \
--validate

You need to replace $CONFIG with the actual config file:

  • For single dataset semi-supervised learning, please use config files in configs/semi.
  • For cross-dataset semi-supervised learning, please use config files in configs/semi_both.

Testing

# Multi-GPU testing
./tools/dist_test.sh $CONFIG ${path_to_your_ckpt} ${num_of_gpus} --eval top_k_accuracy

# Single-GPU testing
python tools/test.py $CONFIG ${path_to_your_ckpt} --eval top_k_accuracy

NOTE: Do not use multi-GPU testing if you are currently using multi-GPU training.

Other details

Please see getting_started.md for the basic usage of MMAction2.

Acknowledgement

Codes are built upon MMAction2.

Owner
Virginia Tech Vision and Learning Lab
Virginia Tech Vision and Learning Lab
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022