Learning Representational Invariances for Data-Efficient Action Recognition

Overview

Learning Representational Invariances for Data-Efficient Action Recognition

Official PyTorch implementation for Learning Representational Invariances for Data-Efficient Action Recognition. We follow the code structure of MMAction2.

See the project page for more details.

Installation

We use PyTorch-1.6.0 with CUDA-10.2 and Torchvision-0.7.0.

Please refer to install.md for installation.

Data Preparation

First, please download human detection results and put them in the corresponding folder under data: UCF-101, HMDB-51, Kinetics-100.

Second, please refer to data_preparation.md to prepare raw frames of UCF-101 and HMDB-51. (Instructions of extracting frames from Kinetics-100 will be available soon.)

(Optional) You can download the pre-extracted ImageNet scores: UCF-101, HMDB-51.

Training

We use 8 RTX2080 Ti GPUs to run our experiments. You would need to adjust your training schedule accordingly if you have less GPUs. Please refer to here.

Supervised learning

PORT=${PORT:-29500}

python -m torch.distributed.launch \
--nproc_per_node=8 \
--master_port=$PORT \
tools/train.py \
$CONFIG \
--launcher pytorch ${@:3} \
--validate

You need to replace $CONFIG with the actual config file:

  • For supervised baseline, please use config files in configs/recognition/r2plus1d.
  • For strongly-augmented supervised learning, please use config files in configs/supervised_aug.

Semi-supervised learning

PORT=${PORT:-29500}

python -m torch.distributed.launch \
--nproc_per_node=8 \
--master_port=$PORT \
tools/train_semi.py \
$CONFIG \
--launcher pytorch ${@:3} \
--validate

You need to replace $CONFIG with the actual config file:

  • For single dataset semi-supervised learning, please use config files in configs/semi.
  • For cross-dataset semi-supervised learning, please use config files in configs/semi_both.

Testing

# Multi-GPU testing
./tools/dist_test.sh $CONFIG ${path_to_your_ckpt} ${num_of_gpus} --eval top_k_accuracy

# Single-GPU testing
python tools/test.py $CONFIG ${path_to_your_ckpt} --eval top_k_accuracy

NOTE: Do not use multi-GPU testing if you are currently using multi-GPU training.

Other details

Please see getting_started.md for the basic usage of MMAction2.

Acknowledgement

Codes are built upon MMAction2.

Owner
Virginia Tech Vision and Learning Lab
Virginia Tech Vision and Learning Lab
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023