Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Overview

Obs-Causal-Q-Network

AAAI 2022 - Training a Resilient Q-Network against Observational Interference

Preprint | Slides | Colab Demo | PyTorch

Environment Setup

  • option 1 (from conda .yml under conda 10.2 and python 3.6)
conda env create -f obs-causal-q-conda.yml 
  • option 2 (from a clean python 3.6 and please follow the setup of UnityAgent 3D environment for Banana Navigator )
pip install torch torchvision torchaudio
pip install dowhy
pip install gym

1. Example of Training Causal Inference Q-Network (CIQ) on Cartpole

  • Run Causal Inference Q-Network Training (--network 1 for Treatment Inference Q-network)
python 0-cartpole-main.py --network 1
  • Causal Inference Q-Network Architecture

  • Output Logs
observation space: Box(4,)
action space: Discrete(2)
Timing Atk Ratio: 10%
Using CEQNetwork_1. Number of Params: 41872
 Interference Type: 1  Use baseline:  0 use CGM:  1
With:  10.42 % timing attack
Episode 0   Score: 48.00, Average Score: 48.00, Loss: 1.71
With:  0.0 % timing attack
Episode 20   Score: 15.00, Average Score: 18.71, Loss: 30.56
With:  3.57 % timing attack
Episode 40   Score: 28.00, Average Score: 19.83, Loss: 36.36
With:  8.5 % timing attack
Episode 60   Score: 200.00, Average Score: 43.65, Loss: 263.29
With:  9.0 % timing attack
Episode 80   Score: 200.00, Average Score: 103.53, Loss: 116.35
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 193.4
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 164.2
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 147.8
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 193.4
With:  9.5 % timing attack
Episode 100   Score: 200.00, Average Score: 163.20, Loss: 77.38
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 198.4
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 197.8
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 197.6
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 198.6
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 199.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 186.8
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0

Environment solved in 114 episodes!     Average Score: 195.55
Environment solved in 114 episodes!     Average Score: 195.55 +- 25.07
############# Basic Evaluate #############
Using CEQNetwork_1. Number of Params: 41872
Evaluate Score : 200.0
############# Noise Evaluate #############
Using CEQNetwork_1. Number of Params: 41872
Robust Score : 200.0

2. Example of Training a "Variational" Causal Inference Q-Network on Unity 3D Banana Navigator

  • Run Variational Causal Inference Q-Networks (VCIQs) Training (--network 3 for Causal Variational Inference)
python 1-banana-navigator-main.py --network 3
  • Variational Causal Inference Q-Network Architecture

  • Output Logs
'Academy' started successfully!
Unity Academy name: Academy
        Number of Brains: 1
        Number of External Brains : 1
        Lesson number : 0
        Reset Parameters :

Unity brain name: BananaBrain
        Number of Visual Observations (per agent): 0
        Vector Observation space type: continuous
        Vector Observation space size (per agent): 37
        Number of stacked Vector Observation: 1
        Vector Action space type: discrete
        Vector Action space size (per agent): 4
        Vector Action descriptions: , , , 
Timing Atk Ratio: 10%
Using CEVAE_QNetwork.
Unity Worker id: 10  T: 1  Use baseline:  0  CEVAE:  1
With:  9.67 % timing attack
Episode 0   Score: 0.00, Average Score: 0.00
With:  11.0 % timing attack
Episode 5   Score: 1.00, Average Score: 0.17
With:  11.33 % timing attack
Episode 10   Score: 0.00, Average Score: 0.36
With:  10.33 % timing attack
Episode 15   Score: 0.00, Average Score: 0.56
...
Episode 205   Score: 10.00, Average Score: 9.25
With:  9.33 % timing attack
Episode 210   Score: 9.00, Average Score: 9.70
With:  9.0 % timing attack
Episode 215   Score: 10.00, Average Score: 11.10
With:  8.33 % timing attack
Episode 220   Score: 14.00, Average Score: 10.85
With:  12.33 % timing attack
Episode 225   Score: 19.00, Average Score: 11.70
With:  11.0 % timing attack
Episode 230   Score: 18.00, Average Score: 12.10
With:  7.67 % timing attack
Episode 235   Score: 21.00, Average Score: 11.60
With:  9.67 % timing attack
Episode 240   Score: 16.00, Average Score: 12.05

Environment solved in 242 episodes!     Average Score: 12.50
Environment solved in 242 episodes!     Average Score: 12.50 +- 4.87
############# Basic Evaluate #############
Using CEVAE_QNetwork.
Evaluate Score : 12.6
############# Noise Evaluate #############
Using CEVAE_QNetwork.
Robust Score : 12.5

Reference

This fun work was initialzed when Danny and I first read the Causal Variational Model between 2018 to 2019 with the helps from Dr. Yi Ouyang and Dr. Pin-Yu Chen.

Please consider to reference the paper if you find this work helpful or relative to your research.

@article{yang2021causal,
  title={Causal Inference Q-Network: Toward Resilient Reinforcement Learning},
  author={Yang, Chao-Han Huck and Hung, I and Danny, Te and Ouyang, Yi and Chen, Pin-Yu},
  journal={arXiv preprint arXiv:2102.09677},
  year={2021}
}
Owner
Speech, Privacy, Robust RL, and Causal Inference.
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022