A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Overview

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks

This repository is the official PyTorch implementation of AAAI-21 paper Bag of Tricks for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks, which provides practical and effective tricks used in long-tailed image classification.

Trick gallery: trick_gallery.md

  • The tricks will be constantly updated. If you have or need any long-tail related trick newly proposed, please to open an issue or pull requests. Make sure to attach the results in corresponding md files if you pull a request with a new trick.
  • For any problem, such as bugs, feel free to open an issue.

Paper collection of long-tailed visual recognition

Awesome-of-Long-Tailed-Recognition

Long-Tailed-Classification-Leaderboard

Development log

Trick gallery and combinations

Brief inroduction

We divided the long-tail realted tricks into four families: re-weighting, re-sampling, mixup training, and two-stage training. For more details of the above four trick families, see the original paper.

Detailed information :

  • Trick gallery:

    Tricks, corresponding results, experimental settings, and running commands are listed in trick_gallery.md.
  • Trick combinations:

    Combinations of different tricks, corresponding results, experimental settings, and running commands are listed in trick_combination.md.
  • These tricks and trick combinations, which provide the corresponding results in this repo, have been reorgnized and tested. We are trying our best to deal with the rest, which will be constantly updated.

Main requirements

torch >= 1.4.0
torchvision >= 0.5.0
tensorboardX >= 2.1
tensorflow >= 1.14.0 #convert long-tailed cifar datasets from tfrecords to jpgs
Python 3
apex
  • We provide the detailed requirements in requirements.txt. You can run pip install requirements.txt to create the same running environment as ours.
  • The apex is recommended to be installed for saving GPU memories:
pip install -U pip
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • If the apex is not installed, the Distributed training with DistributedDataParallel in our codes cannot be used.

Preparing the datasets

We provide three datasets in this repo: long-tailed CIFAR (CIFAR-LT), long-tailed ImageNet (ImageNet-LT), and iNaturalist 2018 (iNat18).

The detailed information of these datasets are shown as follows:

Datasets CIFAR-10-LT CIFAR-100-LT ImageNet-LT iNat18
Imbalance factor
100 50 100 50
Training images 12,406 13,996 10,847 12,608 11,5846 437,513
Classes 50 50 100 100 1,000 8,142
Max images 5,000 5,000 500 500 1,280 1,000
Min images 50 100 5 10 5 2
Imbalance factor 100 50 100 50 256 500
-  `Max images` and `Min images` represents the number of training images in the largest and smallest classes, respectively.

-  CIFAR-10-LT-100 means the long-tailed CIFAR-10 dataset with the imbalance factor $\beta = 100$.

-  Imbalance factor is defined as $\beta = \frac{\text{Max images}}{\text{Min images}}$.

  • Data format

The annotation of a dataset is a dict consisting of two field: annotations and num_classes. The field annotations is a list of dict with image_id, fpath, im_height, im_width and category_id.

Here is an example.

{
    'annotations': [
                    {
                        'image_id': 1,
                        'fpath': '/data/iNat18/images/train_val2018/Plantae/7477/3b60c9486db1d2ee875f11a669fbde4a.jpg',
                        'im_height': 600,
                        'im_width': 800,
                        'category_id': 7477
                    },
                    ...
                   ]
    'num_classes': 8142
}
  • CIFAR-LT

    There are two versions of CIFAR-LT.

    1. Cui et al., CVPR 2019 firstly proposed the CIFAR-LT. They provided the download link of CIFAR-LT, and also the codes to generate the data, which are in TensorFlow.

      You can follow the steps below to get this version of CIFAR-LT:

      1. Download the Cui's CIFAR-LT in GoogleDrive or Baidu Netdisk (password: 5rsq). Suppose you download the data and unzip them at path /downloaded/data/.
      2. Run tools/convert_from_tfrecords, and the converted CIFAR-LT and corresponding jsons will be generated at /downloaded/converted/.
    # Convert from the original format of CIFAR-LT
    python tools/convert_from_tfrecords.py  --input_path /downloaded/data/ --out_path /downloaded/converted/
    1. Cao et al., NeurIPS 2019 followed Cui et al., CVPR 2019's method to generate the CIFAR-LT randomly. They modify the CIFAR datasets provided by PyTorch as this file shows.
  • ImageNet-LT

    You can use the following steps to convert from the original images of ImageNet-LT.

    1. Download the original ILSVRC-2012. Suppose you have downloaded and reorgnized them at path /downloaded/ImageNet/, which should contain two sub-directories: /downloaded/ImageNet/train and /downloaded/ImageNet/val.
    2. Download the train/test splitting files (ImageNet_LT_train.txt and ImageNet_LT_test.txt) in GoogleDrive or Baidu Netdisk (password: cj0g). Suppose you have downloaded them at path /downloaded/ImageNet-LT/.
    3. Run tools/convert_from_ImageNet.py, and you will get two jsons: ImageNet_LT_train.json and ImageNet_LT_val.json.
    # Convert from the original format of ImageNet-LT
    python tools/convert_from_ImageNet.py --input_path /downloaded/ImageNet-LT/ --image_path /downloaed/ImageNet/ --output_path ./
  • iNat18

    You can use the following steps to convert from the original format of iNaturalist 2018.

    1. The images and annotations should be downloaded at iNaturalist 2018 firstly. Suppose you have downloaded them at path /downloaded/iNat18/.
    2. Run tools/convert_from_iNat.py, and use the generated iNat18_train.json and iNat18_val.json to train.
    # Convert from the original format of iNaturalist
    # See tools/convert_from_iNat.py for more details of args 
    python tools/convert_from_iNat.py --input_json_file /downloaded/iNat18/train2018.json --image_path /downloaded/iNat18/images --output_json_file ./iNat18_train.json
    
    python tools/convert_from_iNat.py --input_json_file /downloaded/iNat18/val2018.json --image_path /downloaded/iNat18/images --output_json_file ./iNat18_val.json 

Usage

In this repo:

  • The results of CIFAR-LT (ResNet-32) and ImageNet-LT (ResNet-10), which need only one GPU to train, are gotten by DataParallel training with apex.

  • The results of iNat18 (ResNet-50), which need more than one GPU to train, are gotten by DistributedDataParallel training with apex.

  • If more than one GPU is used, DistributedDataParallel training is efficient than DataParallel training, especially when the CPU calculation forces are limited.

Training

Parallel training with DataParallel

1, To train
# To train long-tailed CIFAR-10 with imbalanced ratio of 50. 
# `GPUs` are the GPUs you want to use, such as `0,4`.
bash data_parallel_train.sh configs/test/data_parallel.yaml GPUs

Distributed training with DistributedDataParallel

1, Change the NCCL_SOCKET_IFNAME in run_with_distributed_parallel.sh to [your own socket name]. 
export NCCL_SOCKET_IFNAME = [your own socket name]

2, To train
# To train long-tailed CIFAR-10 with imbalanced ratio of 50. 
# `GPUs` are the GPUs you want to use, such as `0,1,4`.
# `NUM_GPUs` are the number of GPUs you want to use. If you set `GPUs` to `0,1,4`, then `NUM_GPUs` should be `3`.
bash distributed_data_parallel_train.sh configs/test/distributed_data_parallel.yaml NUM_GPUs GPUs

Validation

You can get the validation accuracy and the corresponding confusion matrix after running the following commands.

See main/valid.py for more details.

1, Change the TEST.MODEL_FILE in the yaml to your own path of the trained model firstly.
2, To do validation
# `GPUs` are the GPUs you want to use, such as `0,1,4`.
python main/valid.py --cfg [Your yaml] --gpus GPUS

The comparison between the baseline results using our codes and the references [Cui, Kang]

  • We use Top-1 error rates as our evaluation metric.
  • From the results of two CIFAR-LT, we can see that the CIFAR-LT provided by Cao has much lower Top-1 error rates on CIFAR-10-LT, compared with the baseline results reported in his paper. So, in our experiments, we use the CIFAR-LT of Cui for fairness.
  • For the ImageNet-LT, we find that the color_jitter augmentation was not included in our experiments, which, however, is adopted by other methods. So, in this repo, we add the color_jitter augmentation on ImageNet-LT. The old baseline without color_jitter is 64.89, which is +1.15 points higher than the new baseline.
  • You can click the Baseline in the table below to see the experimental settings and corresponding running commands.
Datasets Cui et al., 2019 Cao et al., 2020 ImageNet-LT iNat18
CIFAR-10-LT CIFAR-100-LT CIFAR-10-LT CIFAR-100-LT
Imbalance factor Imbalance factor
100 50 100 50 100 50 100 50
Backbones ResNet-32 ResNet-32 ResNet-10 ResNet-50
Baselines using our codes
  1. CONFIG (from left to right):
    • configs/cui_cifar/baseline/{cifar10_im100.yaml, cifar10_im50.yaml, cifar100_im100.yaml, cifar100_im50.yaml}
    • configs/cao_cifar/baseline/{cifar10_im100.yaml, cifar10_im50.yaml, cifar100_im100.yaml, cifar100_im50.yaml}
    • configs/ImageNet_LT/imagenetlt_baseline.yaml
    • configs/iNat18/iNat18_baseline.yaml

  2. Running commands:
    • For CIFAR-LT and ImageNet-LT: bash data_parallel_train.sh CONFIG GPU
    • For iNat18: bash distributed_data_parallel_train.sh configs/iNat18/iNat18_baseline.yaml NUM_GPUs GPUs
30.12 24.81 61.76 57.65 28.05 23.55 62.27 56.22 63.74 40.55
Reference [Cui, Kang, Liu] 29.64 25.19 61.68 56.15 29.64 25.19 61.68 56.15 64.40 42.86

Citation

@inproceedings{zhang2020tricks,
  author    = {Yongshun Zhang and Xiu{-}Shen Wei and Boyan Zhou and Jianxin Wu},
  title     = {Bag of Tricks for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks},
  booktitle = {AAAI},
  year      = {2021},
}

Contacts

If you have any question about our work, please do not hesitate to contact us by emails provided in the paper.

Owner
Yong-Shun Zhang
Computer Vision
Yong-Shun Zhang
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022