duralava is a neural network which can simulate a lava lamp in an infinite loop.

Related tags

Deep Learningduralava
Overview

duralava

duralava is a neural network which can simulate a lava lamp in an infinite loop.

Example

This is not a real lava lamp but a "fake" one generated by duralava.

duralava neural network deep learning lava lamp

Novelty

duralava can

  • learn a physical process (a lava lamp).
  • generate an arbitarily long sequence of output, without diverging even after hours (outputting tens of thousands of frames).

How it works

Generative Adversarial Networks (GANs) can learn to generate new samples of data. For example, a GAN can be trained to output images of a lava lamp which look as real as possible. To accomplish this, the GAN gets an input vector with normally distributed noise. For duralava this vector is of length 64. Based on this random noise vector it generates a lava lamp image. The random vector thus encodes the state of the lava lamp.

For training, the GAN is presented a real image of a lava lamp and also one of the fake lava lamp and then it learns to make the fake ones look as real as possible.

For a lava lamp, a sequence of images has to be created. This sequence should in fact be infinite since a lava lamp can run forever. Thus the GAN should learn to output an arbitrarily long sequence of lava lamp images as a video. This is achieved by using a recurrent neural network (RNN). The RNN gets the 64 element noise vector of time step t and outputs the 64 element noise vector for time stemp t+1.

The tricky part is to make sure that the state of the lava lamp (the 64 element random noise vector) remains stable. It could for example happen that over time the distribution of noise in the vector diverges from a normal distribution the mean becomes 10 and the standard deviation 52. In this case, the output images of the lava lamps wouldn't be correct anymore as the GAN was trained to expect the input vector to be normally distributed. To solve this problem, I make sure that in training the output of the RNN stays normally distributed. This is accomplished by adding penalization terms in the training which discourage the noise to diverge from the normal distribution.

Low-hanging fruit

I trained on a MacBook Air with an M1 SoC with 16 GB of shared memory for CPU and GPU. Thus, memory was the limiting factor in my experiments.

With more memory, one could

  • Increase the resolution (currently 64x64 pixels)
  • Increase the training sequence length (currently 20)
  • Increase the batch size (currently 32)
Owner
Maximilian Bachl
Maximilian Bachl
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021