Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

Related tags

Deep LearningSGNet
Overview

SGNet

Project for the IJCAI 2021 paper "Structure Guided Lane Detection"

Abstract

Recently, lane detection has made great progress with the rapid development of deep neural networks and autonomous driving. However, there exist three mainly problems including characterizing lanes, modeling the structural relationship between scenes and lanes, and supporting more attributes (e.g., instance and type) of lanes. In this paper, we propose a novel structure guided framework to solve these problems simultaneously. In the framework, we first introduce a new lane representation to characterize each instance. Then a topdown vanishing point guided anchoring mechanism is proposed to produce intensive anchors, which efficiently capture various lanes. Next, multi-level structural constraints are used to improve the perception of lanes. In the process, pixel-level perception with binary segmentation is introduced to promote features around anchors and restore lane details from bottom up, a lane-level relation is put forward to model structures (i.e., parallel) around lanes, and an image-level attention is used to adaptively attend different regions of the image from the perspective of scenes. With the help of structural guidance, anchors are effectively classified and regressed to obtain precise locations and shapes. Extensive experiments on public benchmark datasets show that the proposed approach outperforms stateof- the-art methods with 117 FPS on a single GPU.

Method

Framework Framework of our approach. We first extract the common features by the extractor, which provides features for vanishing point guided anchoring and pixel-level perception. The anchoring produces intensive anchors and perception utilizes binary segmentation to promote features around lanes. Promoted features are used to classify and regress anchors with the aid of lane-level relation and image-level attention. The dashed arrow indicates the supervision, and the supervision of vanishing point and lane segmentation is omitted in the figure.

Quantitative Evaluation

Quantitative Evaluation

Qualitative Evaluation

Qualitative Evaluation

Usage

Dataset Convertion

For CULane, run

python datasets/2_generate_vp_label_dist_culane.py

For Tusimple, run

.datasets/gen_tusimple.sh

NMS Installation

cd lib/nms; python setup.py install

Training

python main.py train --exp_name workdir --cfg cfgs/resnet34.py

Testing

python main.py test --exp_name workdir --cfg cfgs/resnet34.py

Evaluation

cd evaluateion/lane_evaluation
make
./run.sh 
./run_all.sh

Visualization

python main.py test -exp_name workdir --view all

Thanks for the reference provided by the smart code.

Citation

@inproceedings{su2021structure,
  title={Structure Guided Lane Detection},
  author={Su, Jinming and Chen, Chao and Zhang, Ke and Luo, Junfeng and Wei, Xiaoming and Wei, Xiaolin},
  booktitle={International Joint Conference on Artificial Intelligence (IJCAI)},
  year={2021}
}
Owner
Jinming Su
Good Luck!
Jinming Su
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022