This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Related tags

Deep Learningwl-coref
Overview

Word-Level Coreference Resolution

This is a repository with the code to reproduce the experiments described in the paper of the same name, which was accepted to EMNLP 2021. The paper is available here.

Table of contents

  1. Preparation
  2. Training
  3. Evaluation

Preparation

The following instruction has been tested with Python 3.7 on an Ubuntu 20.04 machine.

You will need:

  • OntoNotes 5.0 corpus (download here, registration needed)
  • Python 2.7 to run conll-2012 scripts
  • Java runtime to run Stanford Parser
  • Python 3.7+ to run the model
  • Perl to run conll-2012 evaluation scripts
  • CUDA-enabled machine (48 GB to train, 4 GB to evaluate)
  1. Extract OntoNotes 5.0 arhive. In case it's in the repo's root directory:

     tar -xzvf ontonotes-release-5.0_LDC2013T19.tgz
    
  2. Switch to Python 2.7 environment (where python would run 2.7 version). This is necessary for conll scripts to run correctly. To do it with with conda:

     conda create -y --name py27 python=2.7 && conda activate py27
    
  3. Run the conll data preparation scripts (~30min):

     sh get_conll_data.sh ontonotes-release-5.0 data
    
  4. Download conll scorers and Stanford Parser:

     sh get_third_party.sh
    
  5. Prepare your environment. To do it with conda:

     conda create -y --name wl-coref python=3.7 openjdk perl
     conda activate wl-coref
     python -m pip install -r requirements.txt
    
  6. Build the corpus in jsonlines format (~20 min):

     python convert_to_jsonlines.py data/conll-2012/ --out-dir data
     python convert_to_heads.py
    

You're all set!

Training

If you have completed all the steps in the previous section, then just run:

python run.py train roberta

Use -h flag for more parameters and CUDA_VISIBLE_DEVICES environment variable to limit the cuda devices visible to the script. Refer to config.toml to modify existing model configurations or create your own.

Evaluation

Make sure that you have successfully completed all steps of the Preparation section.

  1. Download and save the pretrained model to the data directory.

     https://www.dropbox.com/s/vf7zadyksgj40zu/roberta_%28e20_2021.05.02_01.16%29_release.pt?dl=0
    
  2. Generate the conll-formatted output:

     python run.py eval roberta --data-split test
    
  3. Run the conll-2012 scripts to obtain the metrics:

     python calculate_conll.py roberta test 20
    
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022