CAR-API: Cityscapes Attributes Recognition API

Related tags

Deep LearningCAR-API
Overview

CAR-API: Cityscapes Attributes Recognition API

This is the official api to download and fetch attributes annotations for Cityscapes Dataset.

Content

Installation

You first need to download Cityscapes dataset. You can do so by checking this repo.

I'm showing here a simple working example to download the data but for further issues please refer to the source repo. Or download from the official website

  1. Install Cityscapes scripts and other required packages.
$ pip install -r requirements.txt
  1. Run the following script to download Cityscapes dataset. If you don't have an account, you will need to create an account.
$ csDownload -d [DESTINATION_PATH] PACKAGE_NAME

Note: you can also use -l option to list all possible packages to download. i.e.

$ csDownload -l
  1. After downloading all required packages, set the environment variable CITYSCAPES_DATASET to the location of the dataset. For example, if the dataset is installed in the path /home/user/cityscapes/
$ export CITYSCAPES_DATASET="/home/user/cityscapes/"

Note: you can also export the previous command to your ~/.bashrc file for example.

~/.bashrc ">
$ echo 'export CITYSCAPES_DATASET="/home/user/cityscapes/"' > ~/.bashrc

Note2: we actually need the images only. We do not need the labels as it is stored with the attributes annotations as well.

  1. Run the following to download the json files of CAR compressed as a single zip file extract it and then remove the zip file.
$ python download_CAR.py --url_path "https://DOWNLOAD_LINK_HERE"

To obtain the download link, please email me at kmetwaly511 [at] gmail [dot] com.

At this point, you have 4 json files; namely all.json, train.json, val.json and test.json

PyTorch Example

We provide a pytorch example to read the dataset and retrieve a sample of the dataset in pytorch_dataset_CAR.py. Please, refer to main.It contains a code that goes through the entire dataset.

An output sample of the dataset class is of custom type ModelInputItem. Please refer to the definiton of the class for more details about defined methods and variables.

Citation

If you are planning to use this code or the dataset, please cite the work appropriately as follows.

@misc{car_api,
  title = {{CAR}-{API}: an {API} for {CAR} Dataset},
  key = {{CAR}-{API}},
  howpublished = {\url{http://github.com/kareem-metwaly/car-api}},
  note = {Accessed: 2021-11-16}
}

@misc{metwaly2022car,
  title={{CAR} -- Cityscapes Attributes Recognition A Multi-category Attributes Dataset for Autonomous Vehicles}, 
  author={Kareem Metwaly and Aerin Kim and Elliot Branson and Vishal Monga},
  year={2021},
  eprint={2111.08243},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  howpublished = {\url{https://arxiv.org/abs/2111.08243}},
  urldate = {2021-11-17},
}
Owner
Kareem Metwaly
Kareem Metwaly
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
113 Nov 28, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022