CAR-API: Cityscapes Attributes Recognition API

Related tags

Deep LearningCAR-API
Overview

CAR-API: Cityscapes Attributes Recognition API

This is the official api to download and fetch attributes annotations for Cityscapes Dataset.

Content

Installation

You first need to download Cityscapes dataset. You can do so by checking this repo.

I'm showing here a simple working example to download the data but for further issues please refer to the source repo. Or download from the official website

  1. Install Cityscapes scripts and other required packages.
$ pip install -r requirements.txt
  1. Run the following script to download Cityscapes dataset. If you don't have an account, you will need to create an account.
$ csDownload -d [DESTINATION_PATH] PACKAGE_NAME

Note: you can also use -l option to list all possible packages to download. i.e.

$ csDownload -l
  1. After downloading all required packages, set the environment variable CITYSCAPES_DATASET to the location of the dataset. For example, if the dataset is installed in the path /home/user/cityscapes/
$ export CITYSCAPES_DATASET="/home/user/cityscapes/"

Note: you can also export the previous command to your ~/.bashrc file for example.

~/.bashrc ">
$ echo 'export CITYSCAPES_DATASET="/home/user/cityscapes/"' > ~/.bashrc

Note2: we actually need the images only. We do not need the labels as it is stored with the attributes annotations as well.

  1. Run the following to download the json files of CAR compressed as a single zip file extract it and then remove the zip file.
$ python download_CAR.py --url_path "https://DOWNLOAD_LINK_HERE"

To obtain the download link, please email me at kmetwaly511 [at] gmail [dot] com.

At this point, you have 4 json files; namely all.json, train.json, val.json and test.json

PyTorch Example

We provide a pytorch example to read the dataset and retrieve a sample of the dataset in pytorch_dataset_CAR.py. Please, refer to main.It contains a code that goes through the entire dataset.

An output sample of the dataset class is of custom type ModelInputItem. Please refer to the definiton of the class for more details about defined methods and variables.

Citation

If you are planning to use this code or the dataset, please cite the work appropriately as follows.

@misc{car_api,
  title = {{CAR}-{API}: an {API} for {CAR} Dataset},
  key = {{CAR}-{API}},
  howpublished = {\url{http://github.com/kareem-metwaly/car-api}},
  note = {Accessed: 2021-11-16}
}

@misc{metwaly2022car,
  title={{CAR} -- Cityscapes Attributes Recognition A Multi-category Attributes Dataset for Autonomous Vehicles}, 
  author={Kareem Metwaly and Aerin Kim and Elliot Branson and Vishal Monga},
  year={2021},
  eprint={2111.08243},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  howpublished = {\url{https://arxiv.org/abs/2111.08243}},
  urldate = {2021-11-17},
}
Owner
Kareem Metwaly
Kareem Metwaly
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022