Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Overview

Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Build Status PyPI version

Deep generative models are rapidly becoming popular for the discovery of new molecules and materials. Such models learn on a large collection of molecular structures and produce novel compounds. In this work, we introduce Molecular Sets (MOSES), a benchmarking platform to support research on machine learning for drug discovery. MOSES implements several popular molecular generation models and provides a set of metrics to evaluate the quality and diversity of generated molecules. With MOSES, we aim to standardize the research on molecular generation and facilitate the sharing and comparison of new models.

For more details, please refer to the paper.

If you are using MOSES in your research paper, please cite us as

@article{10.3389/fphar.2020.565644,
  title={{M}olecular {S}ets ({MOSES}): {A} {B}enchmarking {P}latform for {M}olecular {G}eneration {M}odels},
  author={Polykovskiy, Daniil and Zhebrak, Alexander and Sanchez-Lengeling, Benjamin and Golovanov, Sergey and Tatanov, Oktai and Belyaev, Stanislav and Kurbanov, Rauf and Artamonov, Aleksey and Aladinskiy, Vladimir and Veselov, Mark and Kadurin, Artur and Johansson, Simon and  Chen, Hongming and Nikolenko, Sergey and Aspuru-Guzik, Alan and Zhavoronkov, Alex},
  journal={Frontiers in Pharmacology},
  year={2020}
}

pipeline

Dataset

We propose a benchmarking dataset refined from the ZINC database.

The set is based on the ZINC Clean Leads collection. It contains 4,591,276 molecules in total, filtered by molecular weight in the range from 250 to 350 Daltons, a number of rotatable bonds not greater than 7, and XlogP less than or equal to 3.5. We removed molecules containing charged atoms or atoms besides C, N, S, O, F, Cl, Br, H or cycles longer than 8 atoms. The molecules were filtered via medicinal chemistry filters (MCFs) and PAINS filters.

The dataset contains 1,936,962 molecular structures. For experiments, we split the dataset into a training, test and scaffold test sets containing around 1.6M, 176k, and 176k molecules respectively. The scaffold test set contains unique Bemis-Murcko scaffolds that were not present in the training and test sets. We use this set to assess how well the model can generate previously unobserved scaffolds.

Models

Metrics

Besides standard uniqueness and validity metrics, MOSES provides other metrics to access the overall quality of generated molecules. Fragment similarity (Frag) and Scaffold similarity (Scaff) are cosine distances between vectors of fragment or scaffold frequencies correspondingly of the generated and test sets. Nearest neighbor similarity (SNN) is the average similarity of generated molecules to the nearest molecule from the test set. Internal diversity (IntDiv) is an average pairwise similarity of generated molecules. Fréchet ChemNet Distance (FCD) measures the difference in distributions of last layer activations of ChemNet. Novelty is a fraction of unique valid generated molecules not present in the training set.

Model Valid (↑) [email protected] (↑) [email protected] (↑) FCD (↓) SNN (↑) Frag (↑) Scaf (↑) IntDiv (↑) IntDiv2 (↑) Filters (↑) Novelty (↑)
Test TestSF Test TestSF Test TestSF Test TestSF
Train 1.0 1.0 1.0 0.008 0.4755 0.6419 0.5859 1.0 0.9986 0.9907 0.0 0.8567 0.8508 1.0 1.0
HMM 0.076±0.0322 0.623±0.1224 0.5671±0.1424 24.4661±2.5251 25.4312±2.5599 0.3876±0.0107 0.3795±0.0107 0.5754±0.1224 0.5681±0.1218 0.2065±0.0481 0.049±0.018 0.8466±0.0403 0.8104±0.0507 0.9024±0.0489 0.9994±0.001
NGram 0.2376±0.0025 0.974±0.0108 0.9217±0.0019 5.5069±0.1027 6.2306±0.0966 0.5209±0.001 0.4997±0.0005 0.9846±0.0012 0.9815±0.0012 0.5302±0.0163 0.0977±0.0142 0.8738±0.0002 0.8644±0.0002 0.9582±0.001 0.9694±0.001
Combinatorial 1.0±0.0 0.9983±0.0015 0.9909±0.0009 4.2375±0.037 4.5113±0.0274 0.4514±0.0003 0.4388±0.0002 0.9912±0.0004 0.9904±0.0003 0.4445±0.0056 0.0865±0.0027 0.8732±0.0002 0.8666±0.0002 0.9557±0.0018 0.9878±0.0008
CharRNN 0.9748±0.0264 1.0±0.0 0.9994±0.0003 0.0732±0.0247 0.5204±0.0379 0.6015±0.0206 0.5649±0.0142 0.9998±0.0002 0.9983±0.0003 0.9242±0.0058 0.1101±0.0081 0.8562±0.0005 0.8503±0.0005 0.9943±0.0034 0.8419±0.0509
AAE 0.9368±0.0341 1.0±0.0 0.9973±0.002 0.5555±0.2033 1.0572±0.2375 0.6081±0.0043 0.5677±0.0045 0.991±0.0051 0.9905±0.0039 0.9022±0.0375 0.0789±0.009 0.8557±0.0031 0.8499±0.003 0.996±0.0006 0.7931±0.0285
VAE 0.9767±0.0012 1.0±0.0 0.9984±0.0005 0.099±0.0125 0.567±0.0338 0.6257±0.0005 0.5783±0.0008 0.9994±0.0001 0.9984±0.0003 0.9386±0.0021 0.0588±0.0095 0.8558±0.0004 0.8498±0.0004 0.997±0.0002 0.6949±0.0069
JTN-VAE 1.0±0.0 1.0±0.0 0.9996±0.0003 0.3954±0.0234 0.9382±0.0531 0.5477±0.0076 0.5194±0.007 0.9965±0.0003 0.9947±0.0002 0.8964±0.0039 0.1009±0.0105 0.8551±0.0034 0.8493±0.0035 0.976±0.0016 0.9143±0.0058
LatentGAN 0.8966±0.0029 1.0±0.0 0.9968±0.0002 0.2968±0.0087 0.8281±0.0117 0.5371±0.0004 0.5132±0.0002 0.9986±0.0004 0.9972±0.0007 0.8867±0.0009 0.1072±0.0098 0.8565±0.0007 0.8505±0.0006 0.9735±0.0006 0.9498±0.0006

For comparison of molecular properties, we computed the Wasserstein-1 distance between distributions of molecules in the generated and test sets. Below, we provide plots for lipophilicity (logP), Synthetic Accessibility (SA), Quantitative Estimation of Drug-likeness (QED) and molecular weight.

logP SA
logP SA
weight QED
weight QED

Installation

PyPi

The simplest way to install MOSES (models and metrics) is to install RDKit: conda install -yq -c rdkit rdkit and then install MOSES (molsets) from pip (pip install molsets). If you want to use LatentGAN, you should also install additional dependencies using bash install_latentgan_dependencies.sh.

If you are using Ubuntu, you should also install sudo apt-get install libxrender1 libxext6 for RDKit.

Docker

  1. Install docker and nvidia-docker.

  2. Pull an existing image (4.1Gb to download) from DockerHub:

docker pull molecularsets/moses

or clone the repository and build it manually:

git clone https://github.com/molecularsets/moses.git
nvidia-docker image build --tag molecularsets/moses moses/
  1. Create a container:
nvidia-docker run -it --name moses --network="host" --shm-size 10G molecularsets/moses
  1. The dataset and source code are available inside the docker container at /moses:
docker exec -it molecularsets/moses bash

Manually

Alternatively, install dependencies and MOSES manually.

  1. Clone the repository:
git lfs install
git clone https://github.com/molecularsets/moses.git
  1. Install RDKit for metrics calculation.

  2. Install MOSES:

python setup.py install
  1. (Optional) Install dependencies for LatentGAN:
bash install_latentgan_dependencies.sh

Benchmarking your models

  • Install MOSES as described in the previous section.

  • Get train, test and test_scaffolds datasets using the following code:

import moses

train = moses.get_dataset('train')
test = moses.get_dataset('test')
test_scaffolds = moses.get_dataset('test_scaffolds')
  • You can use a standard torch DataLoader in your models. We provide a simple StringDataset class for convenience:
from torch.utils.data import DataLoader
from moses import CharVocab, StringDataset

train = moses.get_dataset('train')
vocab = CharVocab.from_data(train)
train_dataset = StringDataset(vocab, train)
train_dataloader = DataLoader(
    train_dataset, batch_size=512,
    shuffle=True, collate_fn=train_dataset.default_collate
)

for with_bos, with_eos, lengths in train_dataloader:
    ...
  • Calculate metrics from your model's samples. We recomend sampling at least 30,000 molecules:
import moses
metrics = moses.get_all_metrics(list_of_generated_smiles)
  • Add generated samples and metrics to your repository. Run the experiment multiple times to estimate the variance of the metrics.

Reproducing the baselines

End-to-End launch

You can run pretty much everything with:

python scripts/run.py

This will split the dataset, train the models, generate new molecules, and calculate the metrics. Evaluation results will be saved in metrics.csv.

You can specify the GPU device index as cuda:n (or cpu for CPU) and/or model by running:

python scripts/run.py --device cuda:1 --model aae

For more details run python scripts/run.py --help.

You can reproduce evaluation of all models with several seeds by running:

sh scripts/run_all_models.sh

Training

python scripts/train.py <model name> \
       --train_load <train dataset> \
       --model_save <path to model> \
       --config_save <path to config> \
       --vocab_save <path to vocabulary>

To get a list of supported models run python scripts/train.py --help.

For more details of certain model run python scripts/train.py <model name> --help.

Generation

python scripts/sample.py <model name> \
       --model_load <path to model> \
       --vocab_load <path to vocabulary> \
       --config_load <path to config> \
       --n_samples <number of samples> \
       --gen_save <path to generated dataset>

To get a list of supported models run python scripts/sample.py --help.

For more details of certain model run python scripts/sample.py <model name> --help.

Evaluation

python scripts/eval.py \
       --ref_path <reference dataset> \
       --gen_path <generated dataset>

For more details run python scripts/eval.py --help.

Owner
MOSES
A Benchmarking Platform for Molecular Generation Models
MOSES
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022