Joint parameterization and fitting of stroke clusters

Overview

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters

Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Alla Sheffer1

1University of British Columbia, 2NVIDIA, 3Université de Montréal

@article{strokestrip,
	title = {StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters},
	author = {Pagurek van Mossel, Dave and Liu, Chenxi and Vining, Nicholas and Bessmeltsev, Mikhail and Sheffer, Alla},
	year = 2021,
	journal = {ACM Transactions on Graphics},
	publisher = {ACM},
	address = {New York, NY, USA},
	volume = 40,
	number = 4,
	doi = {10.1145/3450626.3459777}
}

StrokeStrip jointly parameterizes clusters of strokes (a) that, together, represent strips following a single intended curve (b). We compute the parameterization of this strip (c) restricted to the domain of the input strokes (d), which we then use to produce the parameterized intended curve (d).

Usage

./strokestrip input.scap [...args]

Additional optional arguments:

  • --cut: If your input strokes include sharp back-and-forth turns, this flag will use the Cornucopia library to detect and cut such strokes.
  • --debug: Generate extra SVG outputs to introspect the algorithm
  • --rainbow: Generate an SVG showing parameterized strokes coloured with a rainbow gradient (default is red-to-blue)
  • --widths: Generate fitted widths along with centerlines
  • --taper: Force fitted widths to taper to 0 at endpoints

Input format

Drawings are inputted as .scap files, which encode strokes as polylines. Strokes are contained in pairs of braces { ... }. Each stroke has a unique stroke id and a cluster id shared by all strokes that colleectively make up one intended curve. Polyline samples can omit pressure by setting it to a default value of 0.

#[width]	[height]
@[thickness]
{
	#[stroke_id]	[cluster_id]
	[x1]	[y1]	[pressure1]
	[x2]	[y2]	[pressure2]
	[x3]	[y3]	[pressure3]
	[...etc]
}
[...etc]

Example .scap inputs are found in the examples/ directory.

Stroke clusters for new .scap files can be generated using the StrokeAggregator ground truth labeling program.

Development

Dependencies

Gurobi

This package relies on the Gurobi optimization library, which must be installed and licensed on your machine. If you are at a university, a free academic license can be obtained. This project was build with Gurobi 9.0; if you are using a newer version of Gurobi, update FindGUROBI.cmake to reference your installed version (e.g. change gurobi90 to gurobi91 for version 9.1.)

Eigen 3

Ensure that Eigen is installed and that its directory is included in $CMAKE_PREFIX_PATH.

Building

StrokeStrip is configured with Cmake:

mkdir build
cd build
cmake ..
make
Owner
Dave Pagurek
Programmer and digital artist. MSc from UBC CS '21, UWaterloo Software Engineering '19.
Dave Pagurek
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021