Joint parameterization and fitting of stroke clusters

Overview

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters

Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Alla Sheffer1

1University of British Columbia, 2NVIDIA, 3Université de Montréal

@article{strokestrip,
	title = {StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters},
	author = {Pagurek van Mossel, Dave and Liu, Chenxi and Vining, Nicholas and Bessmeltsev, Mikhail and Sheffer, Alla},
	year = 2021,
	journal = {ACM Transactions on Graphics},
	publisher = {ACM},
	address = {New York, NY, USA},
	volume = 40,
	number = 4,
	doi = {10.1145/3450626.3459777}
}

StrokeStrip jointly parameterizes clusters of strokes (a) that, together, represent strips following a single intended curve (b). We compute the parameterization of this strip (c) restricted to the domain of the input strokes (d), which we then use to produce the parameterized intended curve (d).

Usage

./strokestrip input.scap [...args]

Additional optional arguments:

  • --cut: If your input strokes include sharp back-and-forth turns, this flag will use the Cornucopia library to detect and cut such strokes.
  • --debug: Generate extra SVG outputs to introspect the algorithm
  • --rainbow: Generate an SVG showing parameterized strokes coloured with a rainbow gradient (default is red-to-blue)
  • --widths: Generate fitted widths along with centerlines
  • --taper: Force fitted widths to taper to 0 at endpoints

Input format

Drawings are inputted as .scap files, which encode strokes as polylines. Strokes are contained in pairs of braces { ... }. Each stroke has a unique stroke id and a cluster id shared by all strokes that colleectively make up one intended curve. Polyline samples can omit pressure by setting it to a default value of 0.

#[width]	[height]
@[thickness]
{
	#[stroke_id]	[cluster_id]
	[x1]	[y1]	[pressure1]
	[x2]	[y2]	[pressure2]
	[x3]	[y3]	[pressure3]
	[...etc]
}
[...etc]

Example .scap inputs are found in the examples/ directory.

Stroke clusters for new .scap files can be generated using the StrokeAggregator ground truth labeling program.

Development

Dependencies

Gurobi

This package relies on the Gurobi optimization library, which must be installed and licensed on your machine. If you are at a university, a free academic license can be obtained. This project was build with Gurobi 9.0; if you are using a newer version of Gurobi, update FindGUROBI.cmake to reference your installed version (e.g. change gurobi90 to gurobi91 for version 9.1.)

Eigen 3

Ensure that Eigen is installed and that its directory is included in $CMAKE_PREFIX_PATH.

Building

StrokeStrip is configured with Cmake:

mkdir build
cd build
cmake ..
make
Owner
Dave Pagurek
Programmer and digital artist. MSc from UBC CS '21, UWaterloo Software Engineering '19.
Dave Pagurek
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022