Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Overview

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

This repository provides a unified online platform, LoLi-Platform http://mc.nankai.edu.cn/ll/, that covers many popular deep learning-based LLIE methods, of which the results can be produced through a user-friendly web interface, contains a low-light image and video dataset, LoLi-Phone (will be released soon), in which the images and videos are taken by various phones' cameras under diverse illumination conditions and scenes, and collects deep learning-based low-light image and video enhancement methods, datasets, and evaluation metrics. More content and details can be found in our Survey Paper: Lighting the Darkness in the Deep Learning Era. We provide the comparison results on the real low-light videos taken by different mobile phones’ cameras at YouTube https://www.youtube.com/watch?v=Elo9TkrG5Oo&t=6s.

We will periodically update the content. Welcome to let us know if we miss your work that is published in top-tier Journal or conference. We will add it.

Our LoLi-Platform supports the function of download. Please right click and then save the figure.

If you use this dataset or platform, please cite our paper. Please hit the star at the top-right corner. Thanks!

Contents

  1. LoLi-Platform
  2. LoLi-Phone Dataset
  3. Methods
  4. Datasets
  5. Metrics
  6. Citation

LoLi-Platform

Currently, the LoLi-Platform covers 13 popular deep learning-based LLIE methods including LLNet, LightenNet, Retinex-Net, EnlightenGAN, MBLLEN, KinD, KinD++, TBEFN, DSLR, DRBN, ExCNet, Zero-DCE, and RRDNet, where the results of any inputs can be produced through a user-friendly web interface. Have fun: LoLi-Platform.

LoLi-Phone

Overview LoLi-Phone dataset contains 120 videos (55,148 images) taken by 18 different phones' cameras including iPhone 6s, iPhone 7, iPhone7 Plus, iPhone8 Plus, iPhone 11, iPhone 11 Pro, iPhone XS, iPhone XR, iPhone SE, Xiaomi Mi 9, Xiaomi Mi Mix 3, Pixel 3, Pixel 4, Oppo R17, Vivo Nex, LG M322, OnePlus 5T, Huawei Mate 20 Pro under diverse illumination conditions (e.g., weak illumination, underexposure, dark, extremely dark, back-lit, non-uniform light, color light sources, etc.) in the indoor and outdoor scenes. Anyone can access the LoLi-Phone dataset.

Methods

Overview

Date Publication Title Abbreviation Code Platform
2017 PR LLNet: A deep autoencoder approach to natural low-light image enhancement paper LLNet Code Theano
2018 PRL LightenNet: A convolutional neural network for weakly illuminated image enhancement paper LightenNet Code Caffe & MATLAB
2018 BMVC Deep retinex decomposition for low-light enhancement paper Retinex-Net Code TensorFlow
2018 BMVC MBLLEN: Low-light image/video enhancement using CNNs paper MBLLEN Code TensorFlow
2018 TIP Learning a deep single image contrast enhancer from multi-exposure images paper SCIE Code Caffe & MATLAB
2018 CVPR Learning to see in the dark paper Chen et al. Code TensorFlow
2018 NeurIPS DeepExposure: Learning to expose photos with asynchronously reinforced adversarial learning paper DeepExposure TensorFlow
2019 ICCV Seeing motion in the dark paper Chen et al. Code TensorFlow
2019 ICCV Learning to see moving object in the dark paper Jiang and Zheng Code TensorFlow
2019 CVPR Underexposed photo enhancement using deep illumination estimation paper DeepUPE Code TensorFlow
2019 ACMMM Kindling the darkness: A practical low-light image enhancer paper KinD Code TensorFlow
2019 ACMMM (IJCV) Kindling the darkness: A practical low-light image enhancer paper (Beyond brightening low-light images paper) KinD (KinD++) Code TensorFlow
2019 ACMMM Progressive retinex: Mutually reinforced illumination-noise perception network for low-light image enhancement paper Wang et al. Caffe
2019 TIP Low-light image enhancement via a deep hybrid network paper Ren et al. Caffe
2019(2021) arXiv(TIP) EnlightenGAN: Deep light enhancement without paired supervision paper arxiv EnlightenGAN Code PyTorch
2019 ACMMM Zero-shot restoration of back-lit images using deep internal learning paper ExCNet Code PyTorch
2020 CVPR Zero-reference deep curve estimation for low-light image enhancement paper Zero-DCE Code PyTorch
2020 CVPR From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement paper DRBN Code PyTorch
2020 ACMMM Fast enhancement for non-uniform illumination images using light-weight CNNs paper Lv et al. TensorFlow
2020 ACMMM Integrating semantic segmentation and retinex model for low light image enhancement paper Fan et al.
2020 CVPR Learning to restore low-light images via decomposition-and-enhancement paper Xu et al. PyTorch
2020 AAAI EEMEFN: Low-light image enhancement via edge-enhanced multi-exposure fusion network paper EEMEFN PyTorch
2020 TIP Lightening network for low-light image enhancement paper DLN PyTorch
2020 TMM Luminance-aware pyramid network for low-light image enhancement paper LPNet PyTorch
2020 ECCV Low light video enhancement using synthetic data produced with an intermediate domain mapping paper SIDGAN TensorFlow
2020 TMM TBEFN: A two-branch exposure-fusion network for low-light image enhancement paper TBEFN Code TensorFlow
2020 ICME Zero-shot restoration of underexposed images via robust retinex decomposition paper RRDNet Code PyTorch
2020 TMM DSLR: Deep stacked laplacian restorer for low-light image enhancement paper DSLR Code PyTorch

Datasets

Abbreviation Number Format Real/Synetic Video Paired/Unpaired/Application Dataset
LOL paper 500 RGB Real No Paired Dataset
SCIE paper 4413 RGB Real No Paired Dataset
MIT-Adobe FiveK paper 5000 Raw Real No Paired Dataset
SID paper 5094 Raw Real No Paired Dataset
DRV paper 202 Raw Real Yes Paired Dataset
SMOID paper 179 Raw Real Yes Paired Dataset
LIME paper 10 RGB Real No Unpaired Dataset
NPE paper 84 RGB Real No Unpaired Dataset
MEF paper 17 RGB Real No Unpaired Dataset
DICM paper 64 RGB Real No Unpaired Dataset
VV 24 RGB Real No Unpaired Dataset
ExDARK paper 7363 RGB Real No Application Dataset
BBD-100K paper 10,000 RGB Real Yes Application Dataset
DARK FACE paper 6000 RGB Real No Application Dataset

Metrics

Abbreviation Full-/Non-Reference Platform Code
MAE (Mean Absolute Error) Full-Reference
MSE (Mean Square Error) Full-Reference
PSNR (Peak Signal-to-Noise Ratio) Full-Reference
SSIM (Structural Similarity Index Measurement) Full-Reference MATLAB Code
LPIPS (Learned Perceptual Image Patch Similarity) Full-Reference PyTorch Code
LOE (Lightness Order Error) Non-Reference MATLAB Code
NIQE (Naturalness Image Quality Evaluator) Non-Reference MATLAB Code
PI (Perceptual Index) Non-Reference MATLAB Code
SPAQ (Smartphone Photography Attribute and Quality) Non-Reference PyTorch Code
NIMA (Neural Image Assessment) Non-Reference PyTorch/TensorFlow Code/Code

Citation

If you find the repository helpful in your resarch, please cite the following paper.

@article{LoLi,
  title={Lighting the Darkness in the Deep Learning Era},
  author={Li, Chongyi and Guo, Chunle and Han, Linghao and Jiang, Jun and Cheng, Ming-Ming and Gu, Jinwei and Loy, Chen Change},
  journal={arXiv:2104.10729},
  year={2021}
}

Contact Information

[email protected]

[email protected]
Owner
Chongyi Li
Chongyi Li
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023