SANet: A Slice-Aware Network for Pulmonary Nodule Detection

Related tags

Deep LearningSANet
Overview

SANet: A Slice-Aware Network for Pulmonary Nodule Detection

This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021.

This code and our data are licensed for non-commerical research purpose only.

Introduction

Lung cancer is the most common cause of cancer death worldwide. A timely diagnosis of the pulmonary nodules makes it possible to detect lung cancer in the early stage, and thoracic computed tomography (CT) provides a convenient way to diagnose nodules. However, it is hard even for experienced doctors to distinguish them from the massive CT slices. The currently existing nodule datasets are limited in both scale and category, which is insufficient and greatly restricts its applications. In this paper, we collect the largest and most diverse dataset named PN9 for pulmonary nodule detection by far. Specifically, it contains 8,798 CT scans and 40,439 annotated nodules from 9 common classes. We further propose a slice-aware network (SANet) for pulmonary nodule detection. A slice grouped non-local (SGNL) module is developed to capture long-range dependencies among any positions and any channels of one slice group in the feature map. And we introduce a 3D region proposal network to generate pulmonary nodule candidates with high sensitivity, while this detection stage usually comes with many false positives. Subsequently, a false positive reduction module (FPR) is proposed by using the multi-scale feature maps. To verify the performance of SANet and the significance of PN9, we perform extensive experiments compared with several state-of-the-art 2D CNN-based and 3D CNN-based detection methods. Promising evaluation results on PN9 prove the effectiveness of our proposed SANet.

SANet

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{21PAMI-SANet,
title={SANet: A Slice-Aware Network for Pulmonary Nodule Detection},
author={Jie Mei and Ming-Ming Cheng and Gang Xu and Lan-Ruo Wan and Huan Zhang},
journal={IEEE transactions on pattern analysis and machine intelligence},
year={2021},
publisher={IEEE},
doi={10.1109/TPAMI.2021.3065086}
}

Requirements

The code is built with the following libraries:

Besides, you need to install a custom module for bounding box NMS and overlap calculation.

cd build/box
python setup.py install

Data

Our new pulmonary nodule dataset PN9 is available now, please refer to here for more information.

Note: Considering the big size of raw data, we provide the PN9 dataset (after preprocessing as described in Sec. 5.2 of our paper) with two formats: .npy files and .jpg images. The data preprocessing contains spatially normalized (including the imaging thickness and spacing, the normalized data is 1mm x 1mm x 1mm.) and transforming the data into [0, 255]. The .npy files store the exact values of the corresponding samples while the .jpg images store the compressed ones. The .jpg version of our dataset is provided with the consideration of reducing the size of PN9 for more convenient distribution over the internet. We have done several ablation experiments on both versions of PN9 (i.e., .npy and .jpg), and the difference between the results basing on different data formats is little.

Download the PN9 and add the information to config.py.

Testing

The pretrained model of SANet with npy files can be downloaded here.

Run the following scripts to evaluate the model and obtain the results of FROC analysis.

python test.py --weight='./results/model/model.ckpt' --out_dir='./results/' --test_set_name='./test.txt'

Training

This implementation supports multi-gpu, data_parallel training.

Change training configuration and data configuration in config.py, especially the path to preprocessed data.

Run the training script:

python train.py

Contact

For any questions, please contact me via e-mail: [email protected].

Acknowledgment

This code is based on the NoduleNet codebase.

Owner
Jie Mei
PhD
Jie Mei
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023