Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Related tags

Deep LearningBSRDM
Overview

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

GitHub versionvisitors

This repository is the official PyTorch implementation of BSRDM with application to blind image super-resolution (arXiv).


While researches on model-based blind single image super-resolution (SISR) have achieved tremendous successes recently, most of them do not consider the image degradation sufficiently. Firstly, they always assume image noise obeys an independent and identically distributed (i.i.d.) Gaussian or Laplacian distribution, which largely underestimates the complexity of real noise. Secondly, previous commonly-used kernel priors (e.g., normalization, sparsity) are not effective enough to guarantee a rational kernel solution, and thus degenerates the performance of subsequent SISR task. To address the above issues, this paper proposes a model-based blind SISR method under the probabilistic framework, which elaborately models image degradation from the perspectives of noise and blur kernel. Specifically, instead of the traditional i.i.d. noise assumption, a patch-based non-i.i.d. noise model is proposed to tackle the complicated real noise, expecting to increase the degrees of freedom of the model for noise representation. As for the blur kernel, we novelly construct a concise yet effective kernel generator, and plug it into the proposed blind SISR method as an explicit kernel prior (EKP). To solve the proposed model, a theoretically grounded Monte Carlo EM algorithm is specifically designed. Comprehensive experiments demonstrate the superiority of our method over current state-of-the-arts on synthetic and real datasets.


Requirements

  • Ubuntu 18.04, cuda 11.0
  • Python 3.8.11, Pytorch 1.7.1
  • More detail (See environment.yml)

Evaluation on Synthetic Data

  1. The synthesized six blur kernels used in our paper can be obtained from here. They are generated by this manuscript.
  2. To test BSRDM under camera sensor noise, run this command:
    python demo_synthetic.py --sf 2 --noise_type signal --noise_estimator niid 
    For the Gaussian noise, run this command:
    python demo_synthetic.py --sf 2 --noise_type Gaussian --noise_level 2.55 --noise_estimator iid 
    In our paper, we use the direct downsampler as default. You can also specify the bicubic or bilinear downsampler. For example,
    python demo_synthetic.py --sf 2 --noise_type Gaussian --noise_level 2.55 --noise_estimator iid --downsampler Bicubic

Evaluation on Real Data

  1. To test BSRDM on the RealSRSet, run this command by specifying your desired scale factor (2,3,or 4):
    python demo_real.py --sf 2
    
  2. Note that in our paper we uniformly set the hyper-parameter \rho to be 0.2. In this manuscript, we adjust the settings of \rho for some images based on the visual results. And the suggested values for \rho is in the range [0.2, 0.4].

License & Acknowledgement

This project is realeased under the GPL-3.0 license. The codes are based on CBDNet, ResizeRight, DIP, and FKP. Please also follow their licenses. Thanks for their great efforts.

Owner
Zongsheng Yue
I'm a currently postdoctoral researcher at the Computer Vision Laboratory, HKU.
Zongsheng Yue
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022