Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Related tags

Deep LearningAXform
Overview

Attention-based Transformation from Latent Features to Point Clouds

This repository contains a PyTorch implementation of the paper:

Attention-based Transformation from Latent Features to Point Clouds
Kaiyi Zhang, Ximing Yang, Yuan Wu, Cheng Jin
AAAI 2022

Introduction

In point cloud generation and completion, previous methods for transforming latent features to point clouds are generally based on fully connected layers (FC-based) or folding operations (Folding-based). However, point clouds generated by FC-based methods are usually troubled by outliers and rough surfaces. For folding-based methods, their data flow is large, convergence speed is slow, and they are also hard to handle the generation of non-smooth surfaces. In this work, we propose AXform, an attention-based method to transform latent features to point clouds. AXform first generates points in an interim space, using a fully connected layer. These interim points are then aggregated to generate the target point cloud. AXform takes both parameter sharing and data flow into account, which makes it has fewer outliers, fewer network parameters, and a faster convergence speed. The points generated by AXform do not have the strong 2-manifold constraint, which improves the generation of non-smooth surfaces. When AXform is expanded to multiple branches for local generations, the centripetal constraint makes it has properties of self-clustering and space consistency, which further enables unsupervised semantic segmentation. We also adopt this scheme and design AXformNet for point cloud completion. Considerable experiments on different datasets show that our methods achieve state-of-the-art results.

Dependencies

  • Python 3.6
  • CUDA 10.0
  • G++ or GCC 7.5
  • PyTorch. Codes are tested with version 1.6.0
  • (Optional) Visdom for visualization of the training process

Install all the following tools based on CUDA.

cd utils/furthestPointSampling
python3 setup.py install

# https://github.com/stevenygd/PointFlow/tree/master/metrics
cd utils/metrics/pytorch_structural_losses
make

# https://github.com/sshaoshuai/Pointnet2.PyTorch
cd utils/Pointnet2.PyTorch/pointnet2
python3 setup.py install

# https://github.com/daerduoCarey/PyTorchEMD
cd utils/PyTorchEMD
python3 setup.py install

# not used
cd utils/randPartial
python3 setup.py install

Datasets

PCN dataset (Google Drive) are used for point cloud completion.

ShapeNetCore.v2.PC2048 (Google Drive) are used for the other tasks. The point clouds are uniformly sampled from the meshes in ShapeNetCore dataset (version 2). All the point clouds are centered and scaled to [-0.5, 0.5]. We follow the official split. The sample code based on PyTorch3D can be found in utils/sample_pytorch3d.py.

Please download them to the data directory.

Training

All the arguments, e.g. gpu_ids, mode, method, hparas, num_branch, class_choice, visual, can be adjusted before training. For example:

# axform, airplane category, 16 branches
python3 axform.py --mode train --num_branch 16 --class_choice ['airplane']

# fc-based, car category
python3 models/fc_folding.py --mode train --method fc-based --class_choice ['car']

# l-gan, airplane category, not use axform
python3 models/latent_3d_points/l-gan.py --mode train --method original --class_choice ['airplane'] --ae_ckpt_path path_to_ckpt_autoencoder.pth

# axformnet, all categories, integrated
python3 axformnet.py --mode train --method integrated --class_choice None

Pre-trained models

Here we provide pre-trained models (Google Drive) for point cloud completion. The following is the suggested way to evaluate the performance of the pre-trained models.

# vanilla
python3 axformnet.py --mode test --method vanilla --ckpt_path path_to_ckpt_vanilla.pth

# integrated
python3 axformnet.py --mode test --method integrated --ckpt_path path_to_ckpt_integrated.pth

Visualization

Matplotlib is used for the visualization of results in the paper. Code for reference can be seen in utils/draw.py.

Here we recommend using Mitsuba 2 for visualization. An example code can be found in Point Cloud Renderer.

Citation

Please cite our work if you find it useful:

@article{zhang2021axform,
 title={Attention-based Transformation from Latent Features to Point Clouds},
 author={Zhang, Kaiyi and Yang, Ximing, and Wu, Yuan and Jin, Cheng},
 journal={arXiv preprint arXiv:2112.05324},
 year={2021}
}

License

This project Code is released under the MIT License (refer to the LICENSE file for details).

This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022