PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

Related tags

Deep LearningHoroPCA
Overview

HoroPCA

This code is the official PyTorch implementation of the ICML 2021 paper:

HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections
Ines Chami*, Albert Gu*, Dat Nguyen*, Christopher Ré
Stanford University
Paper: https://arxiv.org/abs/2106.03306

HoroPCA

Abstract. This paper studies Principal Component Analysis (PCA) for data lying in hyperbolic spaces. Given directions, PCA relies on: (1) a parameterization of subspaces spanned by these directions, (2) a method of projection onto subspaces that preserves information in these directions, and (3) an objective to optimize, namely the variance explained by projections. We generalize each of these concepts to the hyperbolic space and propose HoroPCA, a method for hyperbolic dimensionality reduction. By focusing on the core problem of extracting principal directions, HoroPCA theoretically better preserves information in the original data such as distances, compared to previous generalizations of PCA. Empirically, we validate that HoroPCA outperforms existing dimensionality reduction methods, significantly reducing error in distance preservation. As a data whitening method, it improves downstream classification by up to 3.9% compared to methods that don’t use whitening. Finally, we show that HoroPCA can be used to visualize hyperbolic data in two dimensions.

The code has an implementation of the HoroPCA method, as well as other methods for dimensionality reduction on manifolds, such as Principal Geodesic Analysis and tangent Principal Component Analysis.

Installation

This code was tested on Python3.7 and Pytorch 1.8.1. Start by installing the requirements:

pip install -r requirements.txt

Usage

Main script

Run hyperbolic dimensionality reduction experiments using the main.py script.

python main.py --help

optional arguments:
  -h, --help            show this help message and exit
  --dataset {smalltree,phylo-tree,bio-diseasome,ca-CSphd}
                        which datasets to use
  --model {pca,tpca,pga,bsa,hmds,horopca}
                        which dimensionality reduction method to use
  --metrics METRICS [METRICS ...]
                        which metrics to use
  --dim DIM             input embedding dimension to use
  --n-components N_COMPONENTS
                        number of principal components
  --lr LR               learning rate to use for optimization-based methods
  --n-runs N_RUNS       number of runs for optimization-based methods
  --use-sarkar          use sarkar to embed the graphs
  --sarkar-scale SARKAR_SCALE
                        scale to use for embeddings computed with Sarkar's
                        construction

Examples

1. Run HoroPCA on the smalltree dataset:

python main.py --dataset smalltree --model horopca --dim 10 --n-components 2

Output:

distortion: 	0.19 +- 0.00
frechet_var: 	7.15 +- 0.00

2. Run Euclidean PCA on the smalltree dataset:

python main.py --dataset smalltree --model pca --dim 10 --n-components 2

Output:

distortion: 	0.84 +- 0.00
frechet_var:    0.34 +- 0.00

Datasets

The possible dataset choices in this repo are {smalltree,phylo-tree,bio-diseasome,ca-CSphd}. To add a new dataset, add the corresponding edge list and embedding file in the data/ folder.

Citation

If you use this codebase, or otherwise found our work valuable, please cite:

@article{chami2021horopca,
  title={HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections},
  author={Chami, Ines and Gu, Albert and Nguyen, Dat and R{\'e}, Christopher},
  journal={arXiv preprint arXiv:2106.03306},
  year={2021}
}
Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022