Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

Overview

SegSwap

Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

[PDF] [Project page]

teaser

teaser

If our project is helpful for your research, please consider citing :

@article{shen2021learning,
  title={Learning Co-segmentation by Segment Swapping for Retrieval and Discovery},
  author={Shen, Xi and Efros, Alexei A and Joulin, Armand and Aubry, Mathieu},
  journal={arXiv},
  year={2021}

Table of Content

1. Installation

1.1. Dependencies

Our model can be learnt on a a single GPU Tesla-V100-16GB. The code has been tested in Pytorch 1.7.1 + cuda 10.2

Other dependencies can be installed via (tqdm, kornia, opencv-python, scipy) :

bash requirement.sh

1.2. Pre-trained MocoV2-resnet50 + cross-transformer (~300M)

Quick download :

cd model/pretrained
bash download_model.sh

2. Training Data Generation

2.1. Download COCO (~20G)

This command will download coco2017 training set + annotations (~20G).

cd data/COCO2017/download_coco.sh
bash download_coco.sh

2.2. Image Pairs with One Repeated Object

2.2.1 Generating 100k pairs (~18G)

This command will generate 100k image pairs with one repeated object.

cd data/
python generate_1obj.py --out-dir pairs_1obj_100k 

2.2.1 Examples of image pairs

Source Blended Obj + Background Stylised Source Stylised Background

2.2.2 Visualizing correspondences and masks of the generated pairs

This command will generate 10 pairs and visualize correspondences and masks of the pairs.

cd data/
bash vis_pair.sh

These pairs can be illustrated via vis10_1obj/vis.html

2.3. Image Pairs with Two Repeated Object

2.3.1 Generating 100k pairs (~18G)

This command will generate 100k image pairs with one repeated object.

cd data/
python generate_2obj.py --out-dir pairs_2obj_100k 

2.3.1 Examples of image pairs

Source Blended Obj + Background Stylised Source Stylised Background

2.3.2 Visualizing correspondences and masks of the generated pairs

This command will generate 10 pairs and visualize correspondences and masks of the pairs.

cd data/
bash vis_pair.sh

These pairs can be illustrated via vis10_2obj/vis.html

3. Evaluation

3.1 One-shot Art Detail Detection on Brueghel Dataset

3.1.1 Visual results: top-3 retrieved images

teaser

3.1.2 Data

Brueghel dataset has been uploaded in this repo

3.1.3 Quantitative results

The following command conduct evaluation on Brueghel with pre-trained cross-transformer:

cd evalBrueghel
python evalBrueghel.py --out-coarse out_brueghel.json --resume-pth ../model/hard_mining_neg5.pth --label-pth ../data/Brueghel/brueghelTest.json

Note that this command will save the features of Brueghel(~10G).

3.2 Place Recognition on Tokyo247 Dataset

3.2.1 Visual results: top-3 retrieved images

teaser

3.2.2 Data

Download Tokyo247 from its project page

Download the top-100 results used by patchVlad(~1G).

The data needs to be organised:

./SegSwap/data/Tokyo247
                    ├── query/
                        ├── 247query_subset_v2/
                    ├── database/
...

./SegSwap/evalTokyo
                    ├── top100_patchVlad.npy

3.2.3 Quantitative results

The following command conduct evaluation on Tokyo247 with pre-trained cross-transformer:

cd evalTokyo
python evalTokyo.py --qry-dir ../data/Tokyo247/query/247query_subset_v2 --db-dir ../data/Tokyo247/database --resume-pth ../model/hard_mining_neg5.pth

3.3 Place Recognition on Pitts30K Dataset

3.3.1 Visual results: top-3 retrieved images

teaser

3.3.2 Data

Download Pittsburgh dataset from its project page

Download the top-100 results used by patchVlad (~4G).

The data needs to be organised:

./SegSwap/data/Pitts
                ├── queries_real/
...

./SegSwap/evalPitts
                    ├── top100_patchVlad.npy

3.3.3 Quantitative results

The following command conduct evaluation on Pittsburgh30K with pre-trained cross-transformer:

cd evalPitts
python evalPitts.py --qry-dir ../data/Pitts/queries_real --db-dir ../data/Pitts --resume-pth ../model/hard_mining_neg5.pth

3.4 Discovery on Internet Dataset

3.4.1 Visual results

teaser

3.4.2 Data

Download Internet dataset from its project page

We provide a script to quickly download and preprocess the data (~400M):

cd data/Internet
bash download_int.sh

The data needs to be organised:

./SegSwap/data/Internet
                ├── Airplane100
                    ├── GroundTruth                
                ├── Horse100
                    ├── GroundTruth                
                ├── Car100
                    ├── GroundTruth                                

3.4.3 Quantitative results

The following commands conduct evaluation on Internet with pre-trained cross-transformer

cd evalInt
bash run_pair_480p.sh
bash run_best_only_cycle.sh

4. Training

Stage 1: standard training

Supposing that the generated pairs are saved in ./SegSwap/data/pairs_1obj_100k and ./SegSwap/data/pairs_2obj_100k.

Training command can be found in ./SegSwap/train/run.sh.

Note that this command should be able to be launched on a single GPU with 16G memory.

cd train
bash run.sh

Stage 2: hard mining

In train/run_hardmining.sh, replacing --resume-pth by the model trained in the 1st stage, than running:

cd train
bash run_hardmining.sh

5. Acknowledgement

We appreciate helps from :

Part of code is borrowed from our previous projects: ArtMiner and Watermark

6. ChangeLog

  • 21/10/21, model, evaluation + training released

7. License

This code is distributed under an MIT LICENSE.

Note that our code depends on other libraries, including Kornia, Pytorch, and uses datasets which each have their own respective licenses that must also be followed.

Owner
xshen
Ph.D, Computer Vision, Deep Learning.
xshen
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022