[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

Contents

Cycle-In-Cycle GANs

| Conference Paper | Extended Paper | Project |
Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation
Hao Tang1, Dan Xu2, Gaowen Liu3, Wei Wang4, Nicu Sebe1 and Yan Yan3
1University of Trento, 2University of Oxford, 3Texas State University, 4EPFL
The repository offers the official implementation of our paper in PyTorch.

In the meantime, check out our related BMVC 2020 oral paper Bipartite Graph Reasoning GANs for Person Image Generation, ECCV 2020 paper XingGAN for Person Image Generation, and ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

C2GAN Framework

Framework

License

Creative Commons License
Copyright (C) 2019 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/C2GAN
cd C2GAN/

This code requires PyTorch 0.4.1+ and python 3.6.9+. Please install dependencies by

pip install -r requirements.txt (for pip users)

or

./scripts/conda_deps.sh (for Conda users)

To reproduce the results reported in the paper, you would need an NVIDIA TITAN Xp GPUs.

Dataset Preparation

For your convenience we provide download scripts:

bash ./datasets/download_c2gan_dataset.sh RaFD_image_landmark
  • RaFD_image_landmark: 3.0 GB

or you can use ./scripts/convert_pts_to_figure.m to convert the generated pts files to figures.

Prepare the datasets like in this folder after the download has finished. Please cite their paper if you use the data.

Generating Images Using Pretrained Model

  • You need download a pretrained model (e.g., Radboud) with the following script:
bash ./scripts/download_c2gan_model.sh Radboud
  • The pretrained model is saved at ./checkpoints/{name}_pretrained/latest_net_G.pth.
  • Then generate the result using
python test.py --dataroot ./datasets/Radboud --name Radboud_pretrained --model c2gan --which_model_netG unet_256 --which_direction AtoB --dataset_mode aligned --norm batch --gpu_ids 0 --batch 16;

The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.

  • For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model.

Train and Test New Models

  • Download a dataset using the previous script (e.g., Radboud).
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.
  • Train a model:
sh ./train_c2gan.sh
  • To see more intermediate results, check out ./checkpoints/Radboud_c2gan/web/index.html.
  • Test the model:
sh ./test_c2gan.sh
  • The test results will be saved to a html file here: ./results/Radboud_c2gan/latest_test/index.html.

Acknowledgments

This source code is inspired by Pix2pix, and GestureGAN.

Related Projects

BiGraphGAN | XingGAN | GestureGAN | SelectionGAN | Guided-I2I-Translation-Papers

Citation

If you use this code for your research, please cite our paper.

C2GAN

@article{tang2021total,
  title={Total Generate: Cycle in Cycle Generative Adversarial Networks for Generating Human Faces, Hands, Bodies, and Natural Scenes},
  author={Tang, Hao and Sebe, Nicu},
  journal={IEEE Transactions on Multimedia (TMM)},
  year={2021}
}

@inproceedings{tang2019cycleincycle,
  title={Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation},
  author={Tang, Hao and Xu, Dan and Liu, Gaowen and Wang, Wei and Sebe, Nicu and Yan, Yan},
  booktitle={ACM MM},
  year={2019}
}

If you use the original BiGraphGAN, XingGAN, GestureGAN, and SelectionGAN model, please cite the following papers:

BiGraphGAN

@inproceedings{tang2020bipartite,
  title={Bipartite Graph Reasoning GANs for Person Image Generation},
  author={Tang, Hao and Bai, Song and Torr, Philip HS and Sebe, Nicu},
  booktitle={BMVC},
  year={2020}
}

XingGAN

@inproceedings{tang2020xinggan,
  title={XingGAN for Person Image Generation},
  author={Tang, Hao and Bai, Song and Zhang, Li and Torr, Philip HS and Sebe, Nicu},
  booktitle={ECCV},
  year={2020}
}

GestureGAN

@article{tang2019unified,
  title={Unified Generative Adversarial Networks for Controllable Image-to-Image Translation},
  author={Tang, Hao and Liu, Hong and Sebe, Nicu},
  journal={IEEE Transactions on Image Processing (TIP)},
  year={2020}
}

@inproceedings{tang2018gesturegan,
  title={GestureGAN for Hand Gesture-to-Gesture Translation in the Wild},
  author={Tang, Hao and Wang, Wei and Xu, Dan and Yan, Yan and Sebe, Nicu},
  booktitle={ACM MM},
  year={2018}
}

SelectionGAN

@inproceedings{tang2019multi,
  title={Multi-channel attention selection gan with cascaded semantic guidance for cross-view image translation},
  author={Tang, Hao and Xu, Dan and Sebe, Nicu and Wang, Yanzhi and Corso, Jason J and Yan, Yan},
  booktitle={CVPR},
  year={2019}
}

@article{tang2020multi,
  title={Multi-channel attention selection gans for guided image-to-image translation},
  author={Tang, Hao and Xu, Dan and Yan, Yan and Corso, Jason J and Torr, Philip HS and Sebe, Nicu},
  journal={arXiv preprint arXiv:2002.01048},
  year={2020}
}

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Collaborations

I'm always interested in meeting new people and hearing about potential collaborations. If you'd like to work together or get in contact with me, please email [email protected]. Some of our projects are listed here.


If you can do what you do best and be happy, you're further along in life than most people.

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022