A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Overview

Movenet.Pytorch

license

Intro

start

MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Google just release pre-train models(tfjs or tflite), which cannot be converted to some CPU inference framework such as NCNN,Tengine,MNN,TNN, and we can not add our own custom data to finetune, so there is this repo.

How To Run

1.Download COCO dataset2017 from https://cocodataset.org/. (You need train2017.zip, val2017.zip and annotations.)Unzip to movenet.pytorch/data/ like this:

├── data
    ├── annotations (person_keypoints_train2017.json, person_keypoints_val2017.json, ...)
    ├── train2017   (xx.jpg, xx.jpg,...)
    └── val2017     (xx.jpg, xx.jpg,...)

2.Make data to our data format.

python scripts/make_coco_data_17keypooints.py
Our data format: JSON file
Keypoints order:['nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 
    'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 
    'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 
    'right_ankle']

One item:
[{"img_name": "0.jpg",
  "keypoints": [x0,y0,z0,x1,y1,z1,...],
  #z: 0 for no label, 1 for labeled but invisible, 2 for labeled and visible
  "center": [x,y],
  "bbox":[x0,y0,x1,y1],
  "other_centers": [[x0,y0],[x1,y1],...],
  "other_keypoints": [[[x0,y0],[x1,y1],...],[[x0,y0],[x1,y1],...],...], #lenth = num_keypoints
 },
 ...
]

3.You can add your own data to the same format.

4.After putting data at right place, you can start training

python train.py

5.After training finished, you need to change the test model path to test. Such as this in predict.py

run_task.modelLoad("output/xxx.pth")

6.run predict to show predict result, or run evaluate.py to compute my acc on test dataset.

python predict.py

7.Convert to onnx.

python pth2onnx.py

Training Results

Some good samples

good

Some bad cases

bad

Tips to improve

1. Focus on data

  • Add COCO2014. (But as I know it has some duplicate data of COCO2017, and I don't know if google use it.)
  • Clean the croped COCO2017 data. (Some img just have little points, such as big face, big body,etc.MoveNet is a small network, COCO data is a little hard for it.)
  • Add some yoga, fitness, and dance videos frame from YouTube. (Highly Recommened! Cause Google did this on their Movenet and said 'Evaluations on the Active validation dataset show a significant performance boost relative to identical architectures trained using only COCO. ')

2. Change backbone

Try to ransfer Mobilenetv2(original Movenet) to Mobilenetv3 or Shufflenetv2 may get a litte improvement.If you just wanna reproduce the original Movenet, u can ignore this.

3. More fancy loss

Surely this is a muti-task learning. So add some loss to learn together may improve the performence. (Such as BoneLoss which I have added.) And we can never know how Google trained, cause we cannot see it from the pre-train tflite model file, so you can try any loss function you like.

4. Data Again

I just wanna you know the importance of the data. The more time you spend on clean data and add new data, the better performance your model will get! (While tips 2 and 3 may not.)

Resource

  1. Blog:Next-Generation Pose Detection with MoveNet and TensorFlow.js
  2. model card
  3. TFHub:movenet/singlepose/lightning
  4. My article share: 2021轻量级人体姿态估计模型修炼之路(附谷歌MoveNet复现经验)
Owner
Mr.Fire
Mr.Fire
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023