A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Overview

Movenet.Pytorch

license

Intro

start

MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Google just release pre-train models(tfjs or tflite), which cannot be converted to some CPU inference framework such as NCNN,Tengine,MNN,TNN, and we can not add our own custom data to finetune, so there is this repo.

How To Run

1.Download COCO dataset2017 from https://cocodataset.org/. (You need train2017.zip, val2017.zip and annotations.)Unzip to movenet.pytorch/data/ like this:

├── data
    ├── annotations (person_keypoints_train2017.json, person_keypoints_val2017.json, ...)
    ├── train2017   (xx.jpg, xx.jpg,...)
    └── val2017     (xx.jpg, xx.jpg,...)

2.Make data to our data format.

python scripts/make_coco_data_17keypooints.py
Our data format: JSON file
Keypoints order:['nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 
    'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 
    'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 
    'right_ankle']

One item:
[{"img_name": "0.jpg",
  "keypoints": [x0,y0,z0,x1,y1,z1,...],
  #z: 0 for no label, 1 for labeled but invisible, 2 for labeled and visible
  "center": [x,y],
  "bbox":[x0,y0,x1,y1],
  "other_centers": [[x0,y0],[x1,y1],...],
  "other_keypoints": [[[x0,y0],[x1,y1],...],[[x0,y0],[x1,y1],...],...], #lenth = num_keypoints
 },
 ...
]

3.You can add your own data to the same format.

4.After putting data at right place, you can start training

python train.py

5.After training finished, you need to change the test model path to test. Such as this in predict.py

run_task.modelLoad("output/xxx.pth")

6.run predict to show predict result, or run evaluate.py to compute my acc on test dataset.

python predict.py

7.Convert to onnx.

python pth2onnx.py

Training Results

Some good samples

good

Some bad cases

bad

Tips to improve

1. Focus on data

  • Add COCO2014. (But as I know it has some duplicate data of COCO2017, and I don't know if google use it.)
  • Clean the croped COCO2017 data. (Some img just have little points, such as big face, big body,etc.MoveNet is a small network, COCO data is a little hard for it.)
  • Add some yoga, fitness, and dance videos frame from YouTube. (Highly Recommened! Cause Google did this on their Movenet and said 'Evaluations on the Active validation dataset show a significant performance boost relative to identical architectures trained using only COCO. ')

2. Change backbone

Try to ransfer Mobilenetv2(original Movenet) to Mobilenetv3 or Shufflenetv2 may get a litte improvement.If you just wanna reproduce the original Movenet, u can ignore this.

3. More fancy loss

Surely this is a muti-task learning. So add some loss to learn together may improve the performence. (Such as BoneLoss which I have added.) And we can never know how Google trained, cause we cannot see it from the pre-train tflite model file, so you can try any loss function you like.

4. Data Again

I just wanna you know the importance of the data. The more time you spend on clean data and add new data, the better performance your model will get! (While tips 2 and 3 may not.)

Resource

  1. Blog:Next-Generation Pose Detection with MoveNet and TensorFlow.js
  2. model card
  3. TFHub:movenet/singlepose/lightning
  4. My article share: 2021轻量级人体姿态估计模型修炼之路(附谷歌MoveNet复现经验)
Owner
Mr.Fire
Mr.Fire
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023