[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Related tags

Deep Learningjiif
Overview

Joint Implicit Image Function for Guided Depth Super-Resolution

This repository contains the code for:

Joint Implicit Image Function for Guided Depth Super-Resolution
Jiaxiang Tang, Xiaokang Chen, Gang Zeng
ACM MM 2021

model

Installation

Environments:

  • Python >= 3.6
  • PyTorch >= 1.6.0
  • tensorboardX
  • tqdm, opencv-python, Pillow
  • NVIDIA apex (python-only build is ok.)

Data preparation

Please see data/prepare_data.md for the details.

Training

You can use the provided scripts (scripts/train*) to train models.

For example:

# train JIIF with scale = 8 on the NYU dataset.
OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=2 python main.py \
    --name jiif_8 --model JIIF --scale 8 \
    --sample_q 30720 --input_size 256 --train_batch 1 \
    --epoch 200 --eval_interval 10 \
    --lr 0.0001 --lr_step 60 --lr_gamma 0.2

Testing

To test the performance of the models on difference datasets, you can use the provided scripts (scripts/test*).

For example:

# test the best checkpoint on MiddleBury dataest with scale = 8
OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=1 python main.py \
    --test --checkpoint best \
    --name jiif_8 --model JIIF \
    --dataset Middlebury --scale 8 --data_root ./data/depth_enhance/01_Middlebury_Dataset

Pretrained models and Reproducing

We provide the pretrained models here.

To test the performance of the pretrained models, please download the corresponding models and put them under pretrained folder. Then you can use scripts/test_jiif_pretrained.sh and scripts/test_denoise_jiif_pretrained.sh to reproduce the results reported in our paper.

Citation

If you find the code useful for your research, please use the following BibTeX entry:

@article{tang2021joint,
    title        = {Joint Implicit Image Function for Guided Depth Super-Resolution},
    author       = {Jiaxiang Tang, Xiaokang Chen, Gang Zeng},
    year         = 2021,
    journal      = {arXiv preprint arXiv:2107.08717}
}

Acknowledgment

The model implementation is based on liif.

Owner
hawkey
nameless kiui.
hawkey
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022