Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

Overview

DEFT

DEFT: Detection Embeddings for Tracking

DEFT: Detection Embeddings for Tracking,
Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara
arXiv technical report (arXiv 2102.02267)

@article{Chaabane2021deft,
  title={DEFT: Detection Embeddings for Tracking},
  author={Chaabane, Mohamed and Zhang, Peter and Beveridge, Ross and O'Hara, Stephen},
  journal={arXiv preprint arXiv:2102.02267},
  year={2021}
}

Contact: [email protected]. Any questions or discussion are welcome!

Abstract

Most modern multiple object tracking (MOT) systems follow the tracking-by-detection paradigm, consisting of a detector followed by a method for associating detections into tracks. There is a long history in tracking of combining motion and appearance features to provide robustness to occlusions and other challenges, but typically this comes with the trade-off of a more complex and slower implementation. Recent successes on popular 2D tracking benchmarks indicate that top-scores can be achieved using a state-of-the-art detector and relatively simple associations relying on single-frame spatial offsets -- notably outperforming contemporary methods that leverage learned appearance features to help re-identify lost tracks. In this paper, we propose an efficient joint detection and tracking model named DEFT, or Detection Embeddings for Tracking. Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network. An LSTM is also added to capture motion constraints. DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards while having significant advantages in robustness when applied to more challenging tracking data. DEFT raises the bar on the nuScenes monocular 3D tracking challenge, more than doubling the performance of the previous top method.

Video examples on benchmarks test sets

Tracking performance

Results on MOT challenge test set

Dataset MOTA MOTP IDF1 IDS
MOT16 (Public) 61.7 78.3 60.2 768
MOT16 (Private) 68.03 78.71 66.39 925
MOT17 (Public) 60.4 78.1 59.7 2581
MOT17 (Private) 66.6 78.83 65.42 2823

The results are obtained on the MOT challenge evaluation server.

Results on 2D Vehicle Tracking on KITTI test set

Dataset MOTA MOTP MT ML IDS
KITTI 88.95 84.55 84.77 1.85 343

Tthe results are obtained on the KITTI challenge evaluation server.

Results on 3D Tracking on nuScenes test set

Dataset AMOTA MOTAR MOTA
nuScenes 17.7 48.4 15.6

Tthe results are obtained on the nuScenes challenge evaluation server.

Installation

  • Clone this repo, and run the following commands.
  • create a new conda environment and activate the environment.
git clone [email protected]:MedChaabane/DEFT.git
cd DEFT
conda create -y -n DEFT python=3.7
conda activate DEFT
  • Install PyTorch and the dependencies.
conda install -y pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
pip install -r requirements.txt  
pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
cd src/lib/model/networks/
git clone https://github.com/CharlesShang/DCNv2
cd DCNv2
./make.sh

Datsets Preparation

We use similar datasets preparation like in CenterTrack framework

MOT 2017

  • Run the dataset preprocessing script.
cd src/tools/
sh get_mot_17.sh
  • The output data structure should be:
  ${DEFT_ROOT}
  |-- data
  `-- |-- mot17
      `-- |--- train
          |   |--- MOT17-02-FRCNN
          |   |    |--- img1
          |   |    |--- gt
          |   |    |   |--- gt.txt
          |   |    |   |--- gt_train_half.txt
          |   |    |   |--- gt_val_half.txt
          |   |    |--- det
          |   |    |   |--- det.txt
          |   |    |   |--- det_train_half.txt
          |   |    |   |--- det_val_half.txt
          |   |--- ...
          |--- test
          |   |--- MOT17-01-FRCNN
          |---|--- ...
          `---| annotations
              |--- train_half.json
              |--- val_half.json
              |--- train.json
              `--- test.json

KITTI Tracking

  ${DEFT_ROOT}
  |-- data
  `-- |-- kitti_tracking
      `-- |-- data_tracking_image_2
          |   |-- training
          |   |-- |-- image_02
          |   |-- |-- |-- 0000
          |   |-- |-- |-- ...
          |-- |-- testing
          |-- label_02
          |   |-- 0000.txt
          |   |-- ...
          `-- data_tracking_calib
  • Run the dataset preprocessing script.
cd src/tools/
sh get_kitti_tracking.sh
  • The resulting data structure should look like:
  ${DEFT_ROOT}
  |-- data
  `-- |-- kitti_tracking
      `-- |-- data_tracking_image_2
          |   |-- training
          |   |   |-- image_02
          |   |   |   |-- 0000
          |   |   |   |-- ...
          |-- |-- testing
          |-- label_02
          |   |-- 0000.txt
          |   |-- ...
          |-- data_tracking_calib
          |-- label_02_val_half
          |   |-- 0000.txt
          |   |-- ...
          |-- label_02_train_half
          |   |-- 0000.txt
          |   |-- ...
          `-- annotations
              |-- tracking_train.json
              |-- tracking_test.json
              |-- tracking_train_half.json
              `-- tracking_val_half.json

nuScenes Tracking

  • Download the dataset from nuScenes website. You only need to download the "Keyframe blobs", and only need the images data. You also need to download the maps and all metadata.
  • Unzip, rename, and place the data as below. You will need to merge folders from different zip files.
 ${DEFT_ROOT}
  |-- data
  `-- |-- nuscenes
      `-- |-- v1.0-trainval
          |   |-- samples
          |   |   |-- CAM_BACK
          |   |   |   | -- xxx.jpg
          |   |   |-- CAM_BACK_LEFT
          |   |   |-- CAM_BACK_RIGHT
          |   |   |-- CAM_FRONT
          |   |   |-- CAM_FRONT_LEFT
          |   |   |-- CAM_FRONT_RIGHT
          |-- |-- maps
          `-- |-- v1.0-trainval_meta
  • Run the dataset preprocessing script.
cd src/tools/
convert_nuScenes.py

References

Please cite the corresponding References if you use the datasets.

  @article{MOT16,
    title = {{MOT}16: {A} Benchmark for Multi-Object Tracking},
    shorttitle = {MOT16},
    url = {http://arxiv.org/abs/1603.00831},
    journal = {arXiv:1603.00831 [cs]},
    author = {Milan, A. and Leal-Taix\'{e}, L. and Reid, I. and Roth, S. and Schindler, K.},
    month = mar,
    year = {2016},
    note = {arXiv: 1603.00831},
    keywords = {Computer Science - Computer Vision and Pattern Recognition}
  }


  @INPROCEEDINGS{Geiger2012CVPR,
    author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
    title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
    booktitle = {CVPR},
    year = {2012}
  }


  @inproceedings{nuscenes2019,
  title={{nuScenes}: A multimodal dataset for autonomous driving},
  author={Holger Caesar and Varun Bankiti and Alex H. Lang and Sourabh Vora and Venice Erin Liong and Qiang Xu and Anush Krishnan and Yu Pan and Giancarlo Baldan and Oscar Beijbom},
  booktitle={CVPR},
  year={2020}
  }

Training and Evaluation Experiments

Scripts for training and evaluating DEFT on MOT, KITTI and nuScenes are available in the experiments folder. The outputs videos and results (same as submission format) will be on the folders $dataset_name$_videos and $dataset_name$_results.

Acknowledgement

A large portion of code is borrowed from xingyizhou/CenterTrack, shijieS/SST and Zhongdao/Towards-Realtime-MOT, many thanks to their wonderful work!

Owner
Mohamed Chaabane
PhD Student, Computer Science @ Colorado State University with a deep interest in Deep learning, Machine Learning and Computer Vision.
Mohamed Chaabane
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022