BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Related tags

Deep Learningbddm
Overview

Bilateral Denoising Diffusion Models (BDDMs)

GitHub Stars visitors arXiv demo

This is the official PyTorch implementation of the following paper:

BDDM: BILATERAL DENOISING DIFFUSION MODELS FOR FAST AND HIGH-QUALITY SPEECH SYNTHESIS
Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu

Abstract: Diffusion probabilistic models (DPMs) and their extensions have emerged as competitive generative models yet confront challenges of efficient sampling. We propose a new bilateral denoising diffusion model (BDDM) that parameterizes both the forward and reverse processes with a schedule network and a score network, which can train with a novel bilateral modeling objective. We show that the new surrogate objective can achieve a lower bound of the log marginal likelihood tighter than a conventional surrogate. We also find that BDDM allows inheriting pre-trained score network parameters from any DPMs and consequently enables speedy and stable learning of the schedule network and optimization of a noise schedule for sampling. Our experiments demonstrate that BDDMs can generate high-fidelity audio samples with as few as three sampling steps. Moreover, compared to other state-of-the-art diffusion-based neural vocoders, BDDMs produce comparable or higher quality samples indistinguishable from human speech, notably with only seven sampling steps (143x faster than WaveGrad and 28.6x faster than DiffWave).

Paper: Published at ICLR 2022 on OpenReview

BDDM

This implementation supports model training and audio generation, and also provides the pre-trained models for the benchmark LJSpeech and VCTK dataset.

Visit our demo page for audio samples.

Updates:

  • May 20, 2021: Released our follow-up work FastDiff on GitHub, where we futher optimized the speed-and-quality trade-off.
  • May 10, 2021: Added the experiment configurations and model checkpoints for the VCTK dataset.
  • May 9, 2021: Added the searched noise schedules for the LJSpeech and VCTK datasets.
  • March 20, 2021: Released the PyTorch implementation of BDDM with pre-trained models for the LJSpeech dataset.

Recipes:

  • (Option 1) To train the BDDM scheduling network yourself, you can download the pre-trained score network from philsyn/DiffWave-Vocoder (provided at egs/lj/DiffWave.pkl), and follow the training steps below. (Start from Step I.)
  • (Option 2) To search for noise schedules using BDDM, we provide a pre-trained BDDM for LJSpeech at egs/lj/DiffWave-GALR.pkl and for VCTK at egs/vctk/DiffWave-GALR.pkl . (Start from Step III.)
  • (Option 3) To directly generate samples using BDDM, we provide the searched schedules for LJSpeech at egs/lj/noise_schedules and for VCTK at egs/vctk/noise_schedules (check conf.yml for the respective configurations). (Start from Step IV.)

Getting Started

We provide an example of how you can generate high-fidelity samples using BDDMs.

To try BDDM on your own dataset, simply clone this repo in your local machine provided with NVIDIA GPU + CUDA cuDNN and follow the below intructions.

Dependencies

Step I. Data Preparation and Configuraion

Download the LJSpeech dataset.

For training, we first need to setup a file conf.yml for configuring the data loader, the score and the schedule networks, the training procedure, the noise scheduling and sampling parameters.

Note: Appropriately modify the paths in "train_data_dir" and "valid_data_dir" for training; and the path in "gen_data_dir" for sampling. All dir paths should be link to a directory that store the waveform audios (in .wav) or the Mel-spectrogram files (in .mel).

Step II. Training a Schedule Network

Suppose that a well-trained score network (theta) is stored at $theta_path, we start by modifying "load": $theta_path in conf.yml.

After modifying the relevant hyperparameters for a schedule network (especially "tau"), we can train the schedule network (f_phi in paper) using:

# Training on device 0
sh train.sh 0 conf.yml

Note: In practice, we found that 10K training steps would be enough to obtain a promising scheduling network. This normally takes no more than half an hour for training with one GPU.

Step III. Searching for Noise Schedules

Given a well-trained BDDM (theta, phi), we can now run the noise scheduling algorithm to find the best schedule (optimizing the trade-off between quality and speed).

First, we set "load" in conf.yml to the path of the trained BDDM.

After setting the maximum number of sampling steps in scheduling ("N"), we run:

# Scheduling on device 0
sh schedule.sh 0 conf.yml

Step IV. Evaluation or Generation

For evaluation, we set "gen_data_dir" in conf.yml to the path of a directory that stores the test set of audios (in .wav).

For generation, we set "gen_data_dir" in conf.yml to the path of a directory that stores the Mel-spectrogram (by default in .mel generated by TacotronSTFT or by our dataset loader bddm/loader/dataset.py).

Then, we run:

# Generation/evaluation on device 0 (only support single-GPU scheduling)
sh generate.sh 0 conf.yml

Acknowledgements

This implementation uses parts of the code from the following Github repos:
Tacotron2
DiffWave-Vocoder
as described in our code.

Citations

@inproceedings{lam2022bddm,
  title={BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis},
  author={Lam, Max WY and Wang, Jun and Su, Dan and Yu, Dong},
  booktitle={International Conference on Learning Representations},
  year={2022}
}

License

Copyright 2022 Tencent

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Disclaimer

This is not an officially supported Tencent product.

Owner
Research repositories.
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022