A toy compiler that can convert Python scripts to pickle bytecode πŸ₯’

Overview

Pickora 🐰

A small compiler that can convert Python scripts to pickle bytecode.

Requirements

  • Python 3.8+

No third-party modules are required.

Usage

usage: pickora.py [-h] [-d] [-r] [-l {none,python,pickle}] [-o OUTPUT] file

A toy compiler that can convert Python scripts to pickle bytecode.

positional arguments:
  file                  the Python script to compile

optional arguments:
  -h, --help            show this help message and exit
  -d, --dis             disassamble compiled pickle bytecode
  -r, --eval, --run     run the pickle bytecode
  -l {none,python,pickle}, --lambda {none,python,pickle}
                        choose lambda compiling mode
  -o OUTPUT, --output OUTPUT
                        write compiled pickle to file

Lambda syntax is disabled (--lambda=none) by default.

For exmple, you can run:

python3 pickora.py -d samples/hello.py -o output.pkl

to compile samples/hello.py to output.pkl and show the disassamble result of the compiled pickle bytecode.

But this won't run the pickle for you. If you want you should add -r option, or execute the following command after compile:

python3 -m pickle output.pkl

Special Syntax

RETURN

RETURN is a keyword reserved for specifying pickle.load(s) result. This keyword should only be put in the last statement alone, and you can assign any value / expression to it.

For example, after you compile the following code and use pickle.loads to load the compiled pickle, it returns a string 'INT_MAX=2147483647'.

# source.py
n = pow(2, 31) - 1
RETURN = "INT_MAX=%d" % n

It might look like this:

$ python3 pickora.py source.py -o output.pkl
Saving pickle to output.pkl

$ python3 -m pickle output.pkl
'INT_MAX=2147483647'

Todos

  • Operators (compare, unary, binary, subscript)
  • Unpacking assignment
  • Augmented assignment
  • Macros (directly using GLOBAL, OBJECT bytecodes)
  • Lambda (I don't want to support normal function, because it seems not "picklic" for me)
    • Python bytecode mode
    • Pickle bytecode mode

Impracticable

  • Function call with kwargs
    • NEWOBJ_EX only support type object (it calls __new__)

FAQ

What is pickle?

RTFM.

Why?

It's cool.

Is it useful?

No, not at all, it's definitely useless.

So, is this garbage?

Yep, it's cool garbage.

Would it support syntaxes like if / while / for ?

No. All pickle can do is just simply define a variable or call a function, so this kind of syntax wouldn't exist.

But if you want to do things like:

ans = input("Yes/No: ")
if ans == 'Yes':
  print("Great!")
elif ans == 'No':
  exit()

It's still achievable! You can rewrite your code to this:

from functools import partial
condition = {'Yes': partial(print, 'Great!'), 'No': exit}
ans = input("Yes/No: ")
condition.get(ans, repr)()

ta-da!

For the loop syntax, you can try to use map / reduce ... .

And yes, you are right, it's functional programming time!

Owner
κŒ—α–˜κ’’κ€€κ“„κ’’κ€€κˆ€κŸ
I hate coding.
κŒ—α–˜κ’’κ€€κ“„κ’’κ€€κˆ€κŸ
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

IΓ±igo Alonso Ruiz 58 Dec 15, 2022
Image segmentation with private Δ°stanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

Δ°rem KΓ–MÜRCÜ 9 Dec 11, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022