A toy compiler that can convert Python scripts to pickle bytecode ๐Ÿฅ’

Overview

Pickora ๐Ÿฐ

A small compiler that can convert Python scripts to pickle bytecode.

Requirements

  • Python 3.8+

No third-party modules are required.

Usage

usage: pickora.py [-h] [-d] [-r] [-l {none,python,pickle}] [-o OUTPUT] file

A toy compiler that can convert Python scripts to pickle bytecode.

positional arguments:
  file                  the Python script to compile

optional arguments:
  -h, --help            show this help message and exit
  -d, --dis             disassamble compiled pickle bytecode
  -r, --eval, --run     run the pickle bytecode
  -l {none,python,pickle}, --lambda {none,python,pickle}
                        choose lambda compiling mode
  -o OUTPUT, --output OUTPUT
                        write compiled pickle to file

Lambda syntax is disabled (--lambda=none) by default.

For exmple, you can run:

python3 pickora.py -d samples/hello.py -o output.pkl

to compile samples/hello.py to output.pkl and show the disassamble result of the compiled pickle bytecode.

But this won't run the pickle for you. If you want you should add -r option, or execute the following command after compile:

python3 -m pickle output.pkl

Special Syntax

RETURN

RETURN is a keyword reserved for specifying pickle.load(s) result. This keyword should only be put in the last statement alone, and you can assign any value / expression to it.

For example, after you compile the following code and use pickle.loads to load the compiled pickle, it returns a string 'INT_MAX=2147483647'.

# source.py
n = pow(2, 31) - 1
RETURN = "INT_MAX=%d" % n

It might look like this:

$ python3 pickora.py source.py -o output.pkl
Saving pickle to output.pkl

$ python3 -m pickle output.pkl
'INT_MAX=2147483647'

Todos

  • Operators (compare, unary, binary, subscript)
  • Unpacking assignment
  • Augmented assignment
  • Macros (directly using GLOBAL, OBJECT bytecodes)
  • Lambda (I don't want to support normal function, because it seems not "picklic" for me)
    • Python bytecode mode
    • Pickle bytecode mode

Impracticable

  • Function call with kwargs
    • NEWOBJ_EX only support type object (it calls __new__)

FAQ

What is pickle?

RTFM.

Why?

It's cool.

Is it useful?

No, not at all, it's definitely useless.

So, is this garbage?

Yep, it's cool garbage.

Would it support syntaxes like if / while / for ?

No. All pickle can do is just simply define a variable or call a function, so this kind of syntax wouldn't exist.

But if you want to do things like:

ans = input("Yes/No: ")
if ans == 'Yes':
  print("Great!")
elif ans == 'No':
  exit()

It's still achievable! You can rewrite your code to this:

from functools import partial
condition = {'Yes': partial(print, 'Great!'), 'No': exit}
ans = input("Yes/No: ")
condition.get(ans, repr)()

ta-da!

For the loop syntax, you can try to use map / reduce ... .

And yes, you are right, it's functional programming time!

Owner
๊Œ—แ–˜๊’’๊€ค๊“„๊’’๊€ค๊ˆค๊Ÿ
I hate coding.
๊Œ—แ–˜๊’’๊€ค๊“„๊’’๊€ค๊ˆค๊Ÿ
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of ใ€ŠAn Unsupervised Detection Framewor

7 Nov 08, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper๏ผš SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction ๅ…ณ้”ฎ็‚น็‰ˆๆœฌ๏ผšๅทฒๅฎŒๆˆ ๅ…จๆ™ฏๅˆ†ๅ‰ฒ็‰ˆๆœฌ๏ผšๅทฒๅฎŒๆˆ ๅฎžไพ‹ๅˆ†ๅ‰ฒ็‰ˆๆœฌ๏ผšๅทฒๅฎŒๆˆ YOLOX is an anchor-free version of

23 Oct 20, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
shufflev2-yolov5๏ผšlighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022