A toy compiler that can convert Python scripts to pickle bytecode πŸ₯’

Overview

Pickora 🐰

A small compiler that can convert Python scripts to pickle bytecode.

Requirements

  • Python 3.8+

No third-party modules are required.

Usage

usage: pickora.py [-h] [-d] [-r] [-l {none,python,pickle}] [-o OUTPUT] file

A toy compiler that can convert Python scripts to pickle bytecode.

positional arguments:
  file                  the Python script to compile

optional arguments:
  -h, --help            show this help message and exit
  -d, --dis             disassamble compiled pickle bytecode
  -r, --eval, --run     run the pickle bytecode
  -l {none,python,pickle}, --lambda {none,python,pickle}
                        choose lambda compiling mode
  -o OUTPUT, --output OUTPUT
                        write compiled pickle to file

Lambda syntax is disabled (--lambda=none) by default.

For exmple, you can run:

python3 pickora.py -d samples/hello.py -o output.pkl

to compile samples/hello.py to output.pkl and show the disassamble result of the compiled pickle bytecode.

But this won't run the pickle for you. If you want you should add -r option, or execute the following command after compile:

python3 -m pickle output.pkl

Special Syntax

RETURN

RETURN is a keyword reserved for specifying pickle.load(s) result. This keyword should only be put in the last statement alone, and you can assign any value / expression to it.

For example, after you compile the following code and use pickle.loads to load the compiled pickle, it returns a string 'INT_MAX=2147483647'.

# source.py
n = pow(2, 31) - 1
RETURN = "INT_MAX=%d" % n

It might look like this:

$ python3 pickora.py source.py -o output.pkl
Saving pickle to output.pkl

$ python3 -m pickle output.pkl
'INT_MAX=2147483647'

Todos

  • Operators (compare, unary, binary, subscript)
  • Unpacking assignment
  • Augmented assignment
  • Macros (directly using GLOBAL, OBJECT bytecodes)
  • Lambda (I don't want to support normal function, because it seems not "picklic" for me)
    • Python bytecode mode
    • Pickle bytecode mode

Impracticable

  • Function call with kwargs
    • NEWOBJ_EX only support type object (it calls __new__)

FAQ

What is pickle?

RTFM.

Why?

It's cool.

Is it useful?

No, not at all, it's definitely useless.

So, is this garbage?

Yep, it's cool garbage.

Would it support syntaxes like if / while / for ?

No. All pickle can do is just simply define a variable or call a function, so this kind of syntax wouldn't exist.

But if you want to do things like:

ans = input("Yes/No: ")
if ans == 'Yes':
  print("Great!")
elif ans == 'No':
  exit()

It's still achievable! You can rewrite your code to this:

from functools import partial
condition = {'Yes': partial(print, 'Great!'), 'No': exit}
ans = input("Yes/No: ")
condition.get(ans, repr)()

ta-da!

For the loop syntax, you can try to use map / reduce ... .

And yes, you are right, it's functional programming time!

Owner
κŒ—α–˜κ’’κ€€κ“„κ’’κ€€κˆ€κŸ
I hate coding.
κŒ—α–˜κ’’κ€€κ“„κ’’κ€€κˆ€κŸ
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
gitγ€ŠPseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems Β· This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
CΓ³digo de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022