A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Overview

Dying Light 2 PAKFile Utility

A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.
This tool aims to make PAKFile (.pak files) modding a breeze for both Dying Light 2 modders and mod makers.
See the roadmap for a better idea of what's to come!
More TBA Soon.

Features

  • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
  • Ability to Extract PAKFiles into a Folder to Edit
  • Ability to Build a PAKFile from a Folder

Known Bugs / Issues

This is a collective list of known bugs / glitches / issues.

  • None / TBA

Running the Utility

As an Executable / Binary

Step-by-step instructions to running the utility as a standalone executable.

  1. Download the Latest Release from GitHub.
  2. Save it somewhere easy to remember. A mod management folder is recommended.
  3. Right-Click the DL2-PAKFile-Utility.exe File and Select Run as Administrator
  4. Follow the On-Screen Prompts

From Source

Step-by-step instructions to running the utility from source.

  1. Open an Elevated Command Prompt
  2. Make a Virtual Environment and Activate it
  3. pip install -r requirements.txt
  4. python main.py
  5. ???
  6. $$ PROFIT $$

Making Mods

The location of the two default PAKFiles (data0.pak and data1.pak) is \steamapps\common\Dying Light 2\ph\source . Opening these PAKFiles and extracting them allows you to see all of the scripts that run in the game's engine, the C-Engine. To make a mod, extract one of these PAKFiles and then simply find the files inside of the extracted contents that include what you wish to change, modify them how you'd like, delete everything else that wasn't changed, and then build a PAKFile from that folder! To use the mod you've made, build it as dataN.pak where N is the next highest available number in your default PAKFile location (for example, if you only have data0.pak and data1.pak, you'd build a data3.pak). If other users wish to use it and they have a different number of PAKFiles than you, they may simply rename it to be a higher number in the filename.

Theory on Mod Loading Order

As writing a new mod makes use of upping the integer in the dataN.pak filenames, I'm assuming the higher the integer, the higher the order of precedence is. This is perhaps to say, for example, if one mod (data3.pak) gives unlimited stamina and another (data4.pak) removes unlimited stamina, I believe data4.pak's effects would take priority over data3.pak's and would render stamina untouched / not unlimited.

FAQ

Q1: Why does this need to be ran as an administrator?
A1: Some people store their games / mod management folders in weird places that non-elevated applications typically can't access. This is simply insurance on that possibility, making sure any user who stores their files anywhere can use this tool!
Q2: Why not opt for a better compression algorithm?
A2: This application originally used LZMA compression, which works great, but is unfortunately unsupported by C-Engine. It appears the current compression method, the default zip compression method of deflation, is the only functioning method of compressing .pak files.

Roadmap

This is a loose outline of what is in the future for the DL2 PAKFile Utility!

  • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
  • Ability to Extract PAKFiles into a Folder to Edit
  • Ability to Build a PAKFile from a Folder
  • Search PAKFiles for Specific Contents
  • GUI Integration
  • Intelligently Browse DL2 PAKFile Folder Contents (MOD MANAGER FUNCTIONALITY)
  • Detailed Documentation for both the Application and for Modding DL2
  • Auto-Updating Feature for the Utility that Pulls from GitHub
  • More Modding Tools Built-In

More to be Announced Soon!

You might also like...
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

CondenseNet: Light weighted CNN for mobile devices
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

A light-weight image labelling tool for Python designed for creating segmentation data sets.
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

Official code of
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

PyTorch Implementation of
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Releases(v0.4.6)
  • v0.4.6(Feb 11, 2022)

    v0.4.6 | General Improvements

    This release is just an update to fix some crashing issues (now gives detailed error output and won't close / exit the application) and to address the false-flagging by some anti-virus softwares of this application. It should now give 0 flags on an anti-virus, and should feel a lot smoother in terms of user experience. Also addressed was a minor formatting but when the rebuild feature has been enabled with errors giving a limit of 1-4 when the limit is 1-6 for the main menu selection integer.

    Known Issues

    There are no known issues within this release.

    Upcoming

    Full cross-platform support is planned, and the GUI is a work-in-progress! Big things are coming to this utility soon. Plans for a fully-functional and fully-featured mod loader / manager are in the works.

    Changelog

    This is what is new or different:

    • Better Error and Exception Handling (no more random crashes)
    • Fixed Integer Bounds Formatting
    • Cleanly-Built Pyinstaller Bootloader to Fix False AV Flags
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.29 MB)
  • v0.3.9(Feb 10, 2022)

    v0.3.9 | Hotfix and Improvements

    This is a hotfix. It is intended to fix a bug with built PAKFiles not loading properly into Dying Light 2 / C-Engine. The issue was with LZMA vs Deflation compression methods. Additionally, an option to rebuild the last built .pak has been added for rapid development as you tweak the mods you're making. There won't be much in terms of information in this release, as more work is still being done for future updates. This is simply a hotfix release coupled with a feature request.

    Known Issues

    There is one main issue to be aware of for this release:
    False-Flagging for Antiviruses

    • See this link for an in-depth explanation.
    • TL;DR - a lot of people use pyinstaller, the tool used to freeze the executable, for malicious purposes. Thusly, applications built with the signature of pyinstaller may also be flagged as a virus simply by association of the method used to compile the executable.
    • This will be fixed soon once I've rewritten the pyinstaller bootloader, or possibly switched to nuitka.
    • If the issue annoys you or gives you problems, simply create an antivirus / firewall exception for the app, or build it from source yourself.

    Changelog

    This is what is new or different:

    • Application-Built PAKs Now Work Properly with Dying Light 2 / C-Engine
    • Ability to Rebuild Last PAK from Main Menu
    • Changed Icon Color to Neon Cyan for Visibility (Contrast to Dying Light 2 Game Icon)
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.29 MB)
  • v0.0.1(Feb 9, 2022)

    v0.0.1 | Initial Release

    This is an initial release. It is being released as a "beta" because it's more in a beta state and not in an ideal "release" state currently.
    By no means is it complete and / or finished. It is still lacking in a lot of ways that I wish to improve upon in the near future (see the roadmap).
    Make sure to read the instructions on how to run it before getting upset that it's "immediately closing".
    There are bound to be some bugs and errors, and I implore you to report them in this repository's issue tracker.

    Features

    With all of that being said, here is what you can expect to be working as of this release:

    • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
    • Ability to Extract PAKFiles into a Folder to Edit
    • Ability to Build a PAKFile from a Folder
    • Incredibly Efficient Mod Builder with 79% (21% of Original Size) LZMA Compression on the size of the mods!
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.55 MB)
Owner
RHQ Online
RHQ Online.
RHQ Online
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022