Fake videos detection by tracing the source using video hashing retrieval.

Overview

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️

📜 Directory

Introduction

VTL

Video Tracing and Tampering Localization (VTL). A novel framework to detect fake video (clipping, cropping, blur, etc.) by tracing the source video of fake video. 1) Training hash centers as HCs. 2) Finding index of source video from HCs. 3) Masking the different between fake video and source video as a result of comparison (auxiliary information).

Trace Samples and Acc of HashBits

Although the source videos are very similar, we can accurately find the source videos of the fake video clips.

DFTL Dataset Samples

Same person with different scenes. You can download full 16 minutes videos of source video and fake video by follows link.

Different fake videos from same source.

Source Video

Fake Videos of Different Face Swap Methods

DAVIS2016-TL Dataset Samples

The first gif of boat is source video, and remaining five videos generated by different inpainting methods.

🔬 Train or Test

Datasets Download

BaiduNetdisk code:VTLs

  • actors: Source videos and fake videos of full 16 minutes. You can use these videos to make richer datasets.
  • DFTL: Dataset of DFTL, the DFTL build from actors.
  • DAVIS2016-TL: Extension of DAVIS2016

Extract to the same directory as the code (vtl). Example:

├─other files
├─project
│  ├─vrf: dataset of DFTL
│  ├─inpainting: dataset of DAVIS2016-TL
│  └─vtl: our code
│      ├─CSQ: Central Similarity Quantization for Efficient Image and Video Retrieval
│      ├─dmac: Compared method of Localization
│      └─codes

Train

Pretrained models and hash centers

pip install -r requirements.txt

Model DFTL DAVIS2016-TL
ViTHash 64-1024bits 64-1024bits
Generator link link

Parameters

  • local_rank: gpu id
  • path: dataset path
  • type: choice dataloader
    • 0: DFTL dataloader, dir name is vrf
    • 1: DAVIS2016-TL dataloader, dir name is inpainting

Train ViTHash

python train_h.py --local_rank=0 --path=../vrf --type=0 --bits=128

Train Generator

python train_g.py --local_rank=0 --path=../vrf --type=0

Test

Test IOU

The test script will test Generator of VTL and DMAC together on DFTL and DAVIS2016-TL. You can modify it for yourself.

python test_iou.py

Test ViTHash

  1. type: choice dataloader
    • 0: DFTL dataloader, dir name is vrf
    • 1: DAVIS2016-TL dataloader, dir name is inpainting
  2. path: dataset path
  3. hashbits: 128 256 512 or 1024, will load different pre-trained model and hash JSON file.
python test.py 1 ../inpainting 512

Test CSQ

  1. cd ./CSQ
  2. run test script
python hash_test_vrf.py --dataset=Inpainting --pretrained_3d=./Inpainting_64bits.pth

🚀️ Tracing

Trace Samples

👀️ Localization

Localization Samples

DAVIS2016-TL

DFTL

You might also like...
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

Space-event-trace - Tracing service for spaceteam events
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

A Joint Video and Image Encoder for End-to-End Retrieval
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

Comments
  • the pre-trained model

    the pre-trained model

    I downloaded the provided pre-trained model and the test acc in DFTL and DAVIS2016-TL reached 100%, is this correct? Why is it so much higher than in the article?

    opened by ymhzyj 1
Releases(v1.0)
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022