PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

Overview

StyleSpeech - PyTorch Implementation

PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation.

Status (2021.06.13)

  • StyleSpeech (naive branch)
  • Meta-StyleSpeech (main branch)

Quickstart

Dependencies

You can install the Python dependencies with

pip3 install -r requirements.txt

Inference

You have to download pretrained models and put them in output/ckpt/LibriTTS/.

For English single-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --ref_audio path/to/reference_audio.wav --restore_step 200000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

The generated utterances will be put in output/result/. Your synthesized speech will have ref_audio's style.

Batch Inference

Batch inference is also supported, try

python3 synthesize.py --source preprocessed_data/LibriTTS/val.txt --restore_step 200000 --mode batch -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

to synthesize all utterances in preprocessed_data/LibriTTS/val.txt. This can be viewed as a reconstruction of validation datasets referring to themselves for the reference style.

Controllability

The pitch/volume/speaking rate of the synthesized utterances can be controlled by specifying the desired pitch/energy/duration ratios. For example, one can increase the speaking rate by 20 % and decrease the volume by 20 % by

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --restore_step 200000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml --duration_control 0.8 --energy_control 0.8

Note that the controllability is originated from FastSpeech2 and not a vital interest of StyleSpeech.

Training

Datasets

The supported datasets are

  • LibriTTS: a multi-speaker English dataset containing 585 hours of speech by 2456 speakers.
  • (will be added more)

Preprocessing

First, run

python3 prepare_align.py config/LibriTTS/preprocess.yaml

for some preparations.

In this implementation, Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences.

Download the official MFA package and run

./montreal-forced-aligner/bin/mfa_align raw_data/LibriTTS/ lexicon/librispeech-lexicon.txt english preprocessed_data/LibriTTS

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LibriTTS/ lexicon/librispeech-lexicon.txt preprocessed_data/LibriTTS

to align the corpus and then run the preprocessing script.

python3 preprocess.py config/LibriTTS/preprocess.yaml

Training

Train your model with

python3 train.py -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

As described in the paper, the script will start from pre-training the naive model until meta_learning_warmup steps and then meta-train the model for additional steps via episodic training.

TensorBoard

Use

tensorboard --logdir output/log/LibriTTS

to serve TensorBoard on your localhost.

Implementation Issues

  1. Use 22050Hz sampling rate instead of 16kHz.
  2. Add one fully connected layer at the beginning of Mel-Style Encoder to upsample input mel-spectrogram from 80 to 128.
  3. The model size including meta-learner is 28.197M.
  4. Use a maximum 16 batch size on training instead of 48 or 20 mainly due to the lack of memory capacity with a single 24GiB TITAN-RTX. This can be achieved by the following script to filter out data longer than max_seq_len:
    python3 filelist_filtering.py -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml
    
    This will generate train_filtered.txt in the same location of train.txt.
  5. Since the total batch size is decreased, the number of training steps is doubled compared to the original paper.
  6. Use HiFi-GAN instead of MelGAN for vocoding.

Citation

@misc{lee2021stylespeech,
  author = {Lee, Keon},
  title = {StyleSpeech},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/keonlee9420/StyleSpeech}}
}

References

Comments
  • What is the perfermance compared with Adaspeech

    What is the perfermance compared with Adaspeech

    Thank you for your great work and share. Your work looks differ form adaspeech and NAUTILUS. You use GANs which i did not see in other papers regarding adaptative TTS. Have you compare this method with adaspeech1/2? how about the mos and similarity?

    opened by Liujingxiu23 10
  • The size of tensor a (xx) must match the size of tensor b (yy)

    The size of tensor a (xx) must match the size of tensor b (yy)

    Hi I try to run your project. I use cuda 10.1, all requirements are installed (with torch 1.8.1), all models are preloaded. But i have an error: python3 synthesize.py --text "Hello world" --restore_step 200000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml --duration_control 0.8 --energy_control 0.8 --ref_audio ref.wav

    Removing weight norm...
    Raw Text Sequence: Hello world
    Phoneme Sequence: {HH AH0 L OW1 W ER1 L D}
    Traceback (most recent call last):
      File "synthesize.py", line 268, in <module>
        synthesize(model, args.restore_step, configs, vocoder, batchs, control_values)
      File "synthesize.py", line 152, in synthesize
        d_control=duration_control
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, *kwargs)
      File "/usr/local/work/model/StyleSpeech.py", line 144, in forward
        d_control,
      File "/usr/local/work/model/StyleSpeech.py", line 91, in G
        output, mel_masks = self.mel_decoder(output, style_vector, mel_masks)
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, kwargs)
      File "/usr/local/work/model/modules.py", line 307, in forward
        enc_seq = self.mel_prenet(enc_seq, mask)
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, kwargs)
      File "/usr/local/work/model/modules.py", line 259, in forward
        x = x.masked_fill(mask.unsqueeze(-1), 0)
    RuntimeError: The size of tensor a (44) must match the size of tensor b (47) at non-singleton dimension 1
    
    opened by DiDimus 9
  • VCTK datasets

    VCTK datasets

    Hi, I note your paper evaluates the models' performance on VCTK datasets, but I not see the process file about VCTK. Hence, could you share the files, thank you very much.

    opened by XXXHUA 7
  • training error

    training error

    Thanks for your sharing!

    I tried both naive and main branches using your checkpoints, it seems the former one is much better. So I trained AISHELL3 models with small changes on your code and the synthesized waves are good for me.

    However when I add my own data into AISHELL3, some error occurred: Training: 0%| | 3105/900000 [32:05<154:31:49, 1.61it/s] Epoch 2: 69%|██████████████████████▏ | 318/459 [05:02<02:14, 1.05it/s] File "train.py", line 211, in main(args, configs) File "train.py", line 87, in main output = model(*(batch[2:])) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward return self.module(*inputs[0], **kwargs[0]) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/workspace/StyleSpeech-naive/model/StyleSpeech.py", line 83, in forward ) = self.variance_adaptor( File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/workspace/StyleSpeech-naive/model/modules.py", line 404, in forward x = x + pitch_embedding RuntimeError: The size of tensor a (52) must match the size of tensor b (53) at non-singleton dimension 1

    I only replaced two speakers and preprocessed data the same as the in readme.

    Do you have any advice for this error ? Any suggestion is appreciated.

    opened by MingZJU 6
  • the synthesis result is bad when using pretrain model

    the synthesis result is bad when using pretrain model

    hello sir, thanks for your sharing.

    i meet a problem when i using pretrain model to synthsize demo file. the effect of synthesized wav is so bad.

    do you konw what problem happened?

    pretrain_model: output/ckpt/LibriTTS_meta_learner/200000.pth.tar ref_audio: ref_audio.zip demo_txt: {Promises are often like the butterfly, which disappear after beautiful hover. No matter the ending is perfect or not, you cannot disappear from my world.} demo_wav:demo.zip

    opened by mnfutao 4
  • Maybe style_prototype can instead of ref_mel?

    Maybe style_prototype can instead of ref_mel?

    hello @keonlee9420 , thanks for your contribution on StyleSpeech. When I read your paper and source code, I think that the style_prototype (which is an embedding matrix) maybe can instread of the ref_mel, because there is a CE-loss between style_prototype and style_vector, which can control this embedding matrix close to style. In short, we can give a speaker id to synthesize this speaker's wave. Is it right?

    opened by forwiat 3
  • architecture shows bad results

    architecture shows bad results

    Hi, i have completely repeated your steps for learning. During training, style speech loss fell down, but after learning began, meta style speech loss began to grow up. Can you help with training the model? I can describe my steps in more detail.

    opened by e0xextazy 2
  • UnboundLocalError: local variable 'pitch' referenced before assignment

    UnboundLocalError: local variable 'pitch' referenced before assignment

    Hi, when I run preprocessor.py, I have this problem: /preprocessor.py", line 92, in build_from_path if len(pitch) > 0: UnboundLocalError: local variable 'pitch' referenced before assignment When I try to add a global declaration to the function, it shows NameError: name 'pitch' is not defined How should this be resolved? I would be grateful if I could get your guidance soon.

    opened by Summerxu86 0
  • How can I improve the synthesized results?

    How can I improve the synthesized results?

    I have trained the model for 200k steps, and still, the synthesised results are extremely bad. loss_curve This is what my loss curve looks like. Can you help me with what can I do now to improve my synthesized audio results?

    opened by sanjeevani279 1
  • RuntimeError: Error(s) in loading state_dict for Stylespeech

    RuntimeError: Error(s) in loading state_dict for Stylespeech

    Hi @keonlee9420, I am getting the following error, while running the naive branch :

    Traceback (most recent call last):
      File "synthesize.py", line 242, in <module>
        model = get_model(args, configs, device, train=False)
      File "/home/azureuser/aditya_workspace/stylespeech_keonlee_naive/utils/model.py", line 21, in get_model
        model.load_state_dict(ckpt["model"], strict=True)
      File "/home/azureuser/aditya_workspace/keonlee/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    RuntimeError: Error(s) in loading state_dict for StyleSpeech:
    	Missing key(s) in state_dict: "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_v", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_v", "D_t.final_linear.fc_layer.fc_layer.linear.weight_orig", "D_t.final_linear.fc_layer.fc_layer.linear.weight", "D_t.final_linear.fc_layer.fc_layer.linear.weight_u", "D_t.final_linear.fc_layer.fc_layer.linear.weight_orig", "D_t.final_linear.fc_layer.fc_layer.linear.weight_u", "D_t.final_linear.fc_layer.fc_layer.linear.weight_v", "D_s.fc_1.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_1.fc_layer.fc_layer.linear.weight", "D_s.fc_1.fc_layer.fc_layer.linear.weight_u", "D_s.fc_1.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_1.fc_layer.fc_layer.linear.weight_u", "D_s.fc_1.fc_layer.fc_layer.linear.weight_v", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_v", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_v", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.bias", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_v", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.bias", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_v", "D_s.slf_attn_stack.0.w_qs.linear.weight_orig", "D_s.slf_attn_stack.0.w_qs.linear.weight", "D_s.slf_attn_stack.0.w_qs.linear.weight_u", "D_s.slf_attn_stack.0.w_qs.linear.weight_orig", "D_s.slf_attn_stack.0.w_qs.linear.weight_u", "D_s.slf_attn_stack.0.w_qs.linear.weight_v", "D_s.slf_attn_stack.0.w_ks.linear.weight_orig", "D_s.slf_attn_stack.0.w_ks.linear.weight", "D_s.slf_attn_stack.0.w_ks.linear.weight_u", "D_s.slf_attn_stack.0.w_ks.linear.weight_orig", "D_s.slf_attn_stack.0.w_ks.linear.weight_u", "D_s.slf_attn_stack.0.w_ks.linear.weight_v", "D_s.slf_attn_stack.0.w_vs.linear.weight_orig", "D_s.slf_attn_stack.0.w_vs.linear.weight", "D_s.slf_attn_stack.0.w_vs.linear.weight_u", "D_s.slf_attn_stack.0.w_vs.linear.weight_orig", "D_s.slf_attn_stack.0.w_vs.linear.weight_u", "D_s.slf_attn_stack.0.w_vs.linear.weight_v", "D_s.slf_attn_stack.0.layer_norm.weight", "D_s.slf_attn_stack.0.layer_norm.bias", "D_s.slf_attn_stack.0.fc.linear.weight_orig", "D_s.slf_attn_stack.0.fc.linear.weight", "D_s.slf_attn_stack.0.fc.linear.weight_u", "D_s.slf_attn_stack.0.fc.linear.weight_orig", "D_s.slf_attn_stack.0.fc.linear.weight_u", "D_s.slf_attn_stack.0.fc.linear.weight_v", "D_s.fc_2.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_2.fc_layer.fc_layer.linear.weight", "D_s.fc_2.fc_layer.fc_layer.linear.weight_u", "D_s.fc_2.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_2.fc_layer.fc_layer.linear.weight_u", "D_s.fc_2.fc_layer.fc_layer.linear.weight_v", "D_s.V.fc_layer.fc_layer.linear.weight", "D_s.w_b_0.fc_layer.fc_layer.linear.weight", "D_s.w_b_0.fc_layer.fc_layer.linear.bias", "style_prototype.weight".
    	Unexpected key(s) in state_dict: "speaker_emb.weight".
    

    Can you help with this, seems like the pre-trained weights are old and do not conform to the current architecture.

    opened by sirius0503 1
  • time dimension doesn't match

    time dimension doesn't match

    ^MTraining: 0%| | 0/200000 [00:00<?, ?it/s] ^MEpoch 1: 0%| | 0/454 [00:00<?, ?it/s]^[[APrepare training ... Number of StyleSpeech Parameters: 28197333 Removing weight norm... Traceback (most recent call last): File "train.py", line 224, in main(args, configs) File "train.py", line 98, in main output = (None, None, model((batch[2:-5]))) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward return self.module(*inputs[0], **kwargs[0]) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/StyleSpeech.py", line 144, in forward d_control, File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/StyleSpeech.py", line 88, in G d_control, File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/modules.py", line 417, in forward x = x + pitch_embedding RuntimeError: The size of tensor a (132) must match the size of tensor b (130) at non-singleton dimension 1 ^MTraining: 0%| | 1/200000 [00:02<166:02:12, 2.99s/it]

    I think it might because of mfa I used. As mentioned in https://montreal-forced-aligner.readthedocs.io/en/latest/getting_started.html, I installed mfa through conda.

    Then I used mfa align raw_data/LibriTTS lexicon/librispeech-lexicon.txt english preprocessed_data/LibriTTS instead of the way you showed. But I can't find a way to run it as the way you showed, because I installed mfa through conda.

    opened by MingjieChen 24
Releases(v1.0.2)
Owner
Keon Lee
Expressive Speech Synthesis | Conversational AI | Open-domain Dialog | NLP | Generative Models | Empathic Computing | HCI
Keon Lee
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022