Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Overview

Geometric Vector Perceptron

Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL Townshend, and RO Dror.

UPDATE: Also includes equivariant GNNs with vector gating as described in Equivariant Graph Neural Networks for 3D Macromolecular Structure by B Jing, S Eismann, P Soni, and RO Dror.

Scripts for training / testing / sampling on protein design and training / testing on all ATOM3D tasks are provided.

Note: This implementation is in PyTorch Geometric. The original TensorFlow code, which is not maintained, can be found here.

Requirements

  • UNIX environment
  • python==3.6.13
  • torch==1.8.1
  • torch_geometric==1.7.0
  • torch_scatter==2.0.6
  • torch_cluster==1.5.9
  • tqdm==4.38.0
  • numpy==1.19.4
  • sklearn==0.24.1
  • atom3d==0.2.1

While we have not tested with other versions, any reasonably recent versions of these requirements should work.

General usage

We provide classes in three modules:

  • gvp: core GVP modules and GVP-GNN layers
  • gvp.data: data pipelines for both general use and protein design
  • gvp.models: implementations of MQA and CPD models
  • gvp.atom3d: models and data pipelines for ATOM3D

The core modules in gvp are meant to be as general as possible, but you will likely have to modify gvp.data and gvp.models for your specific application, with the existing classes serving as examples.

Installation: Download this repository and run python setup.py develop or pip install . -e. Be sure to manually install torch_geometric first!

Tuple representation: All inputs and outputs with both scalar and vector channels are represented as a tuple of two tensors (s, V). Similarly, all dimensions should be specified as tuples (n_scalar, n_vector) where n_scalar and n_vector are the number of scalar and vector features, respectively. All V tensors must be shaped as [..., n_vector, 3], not [..., 3, n_vector].

Batching: We adopt the torch_geometric convention of absorbing the batch dimension into the node dimension and keeping track of batch index in a separate tensor.

Amino acids: Models view sequences as int tensors and are agnostic to aa-to-int mappings. Such mappings are specified as the letter_to_num attribute of gvp.data.ProteinGraphDataset. Currently, only the 20 standard amino acids are supported.

For all classes, see the docstrings for more detailed usage. If you have any questions, please contact [email protected].

Core GVP classes

The class gvp.GVP implements a Geometric Vector Perceptron.

import gvp

in_dims = scalars_in, vectors_in
out_dims = scalars_out, vectors_out
gvp_ = gvp.GVP(in_dims, out_dims)

To use vector gating, pass in vector_gate=True and the appropriate activations.

gvp_ = gvp.GVP(in_dims, out_dims,
            activations=(F.relu, None), vector_gate=True)

The classes gvp.Dropout and gvp.LayerNorm implement vector-channel dropout and layer norm, while using normal dropout and layer norm for scalar channels. Both expect inputs and return outputs of form (s, V), but will also behave like their scalar-valued counterparts if passed a single tensor.

dropout = gvp.Dropout(drop_rate=0.1)
layernorm = gvp.LayerNorm(out_dims)

The function gvp.randn returns tuples (s, V) drawn from a standard normal. Such tuples can be directly used in a forward pass.

x = gvp.randn(n=5, dims=in_dims)
# x = (s, V) with s.shape = [5, scalars_in] and V.shape = [5, vectors_in, 3]

out = gvp_(x)
out = drouput(out)
out = layernorm(out)

Finally, we provide utility functions for adding, concatenating, and indexing into such tuples.

y = gvp.randn(n=5, dims=in_dims)
z = gvp.tuple_sum(x, y)
z = gvp.tuple_cat(x, y, dim=-1) # concat along channel axis
z = gvp.tuple_cat(x, y, dim=-2) # concat along node / batch axis

node_mask = torch.rand(5) < 0.5
z = gvp.tuple_index(x, node_mask) # select half the nodes / batch at random

GVP-GNN layers

The class GVPConv is a torch_geometric.MessagePassing module which forms messages and aggregates them at the destination node, returning new node embeddings. The original embeddings are not updated.

nodes = gvp.randn(n=5, in_dims)
edges = gvp.randn(n=10, edge_dims) # 10 random edges
edge_index = torch.randint(0, 5, (2, 10), device=device)

conv = gvp.GVPConv(in_dims, out_dims, edge_dims)
out = conv(nodes, edge_index, edges)

The class GVPConvLayer is a nn.Module that forms messages using a GVPConv and updates the node embeddings as described in the paper. Because the updates are residual, the dimensionality of the embeddings are not changed.

layer = gvp.GVPConvLayer(node_dims, edge_dims)
nodes = layer(nodes, edge_index, edges)

The class also allows updates where incoming messages where src >= dst are computed using a different set of source embeddings, as in autoregressive models.

nodes_static = gvp.randn(n=5, in_dims)
layer = gvp.GVPConvLayer(node_dims, edge_dims, autoregressive=True)
nodes = layer(nodes, edge_index, edges, autoregressive_x=nodes_static)

Both GVPConv and GVPConvLayer accept arguments activations and vector_gate to use vector gating.

Loading data

The class gvp.data.ProteinGraphDataset transforms protein backbone structures into featurized graphs. Following Ingraham, et al, NeurIPS 2019, we use a JSON/dictionary format to specify backbone structures:

[
    {
        "name": "NAME"
        "seq": "TQDCSFQHSP...",
        "coords": [[[74.46, 58.25, -21.65],...],...]
    }
    ...
]

For each structure, coords should be a num_residues x 4 x 3 nested list of the positions of the backbone N, C-alpha, C, and O atoms of each residue (in that order).

import gvp.data

# structures is a list or list-like as shown above
dataset = gvp.data.ProteinGraphDataset(structures)
# dataset[i] is featurized graph corresponding to structures[i]

The returned graphs are of type torch_geometric.data.Data with attributes

  • x: alpha carbon coordinates
  • seq: sequence converted to int tensor according to attribute self.letter_to_num
  • name, edge_index
  • node_s, node_v: node features as described in the paper with dims (6, 3)
  • edge_s, edge_v: edge features as described in the paper with dims (32, 1)
  • mask: false for nodes with any nan coordinates

The gvp.data.ProteinGraphDataset can be used with a torch.utils.data.DataLoader. We supply a class gvp.data.BatchSampler which will form batches based on the number of total nodes in a batch. Use of this sampler is optional.

node_counts = [len(s['seq']) for s in structures]
sampler = gvp.data.BatchSampler(node_counts, max_nodes=3000)
dataloader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler)

The dataloader will return batched graphs of type torch_geometric.data.Batch with an additional batch attibute. The attributes of the Batch will then need to be formed into (s, V) tuples before passing into a GVP-GNN layer or network.

for batch in dataloader:
    batch = batch.to(device) # optional
    nodes = (batch.node_s, batch.node_v)
    edges = (batch.edge_s, batch.edge_v)
    
    out = layer(nodes, batch.edge_index, edges)

Ready-to-use protein GNNs

We provide two fully specified networks which take in protein graphs and output a scalar prediction for each graph (gvp.models.MQAModel) or a 20-dimensional feature vector for each node (gvp.models.CPDModel), corresponding to the two tasks in our paper. Note that if you are using the unmodified gvp.data.ProteinGraphDataset, node_in_dims and edge_in_dims must be (6, 3) and (32, 1), respectively.

import gvp.models

# batch, nodes, edges as formed above

mqa_model = gvp.models.MQAModel(node_in_dim, node_h_dim, 
                        edge_in_dim, edge_h_dim, seq_in=True)
out = mqa_model(nodes, batch.edge_index, edges,
                 seq=batch.seq, batch=batch.batch) # shape (n_graphs,)

cpd_model = gvp.models.CPDModel(node_in_dim, node_h_dim, 
                        edge_in_dim, edge_h_dim)
out = cpd_model(nodes, batch.edge_index, 
                 edges, batch.seq) # shape (n_nodes, 20)

Protein design

We provide a script run_cpd.py to train, validate, and test a CPDModel as specified in the paper using the CATH 4.2 dataset and TS50 dataset. If you want to use a trained model on new structures, see the section "Sampling" below.

Fetching data

Run getCATH.sh in data/ to fetch the CATH 4.2 dataset. If you are interested in testing on the TS 50 test set, also run grep -Fv -f ts50remove.txt chain_set.jsonl > chain_set_ts50.jsonl to produce a training set without overlap with the TS 50 test set.

Training / testing

To train a model, simply run python run_cpd.py --train. To test a trained model on both the CATH 4.2 test set and the TS50 test set, run python run_cpd --test-r PATH for perplexity or with --test-p for perplexity. Run python run_cpd.py -h for more detailed options.

$ python run_cpd.py -h

usage: run_cpd.py [-h] [--models-dir PATH] [--num-workers N] [--max-nodes N] [--epochs N] [--cath-data PATH] [--cath-splits PATH] [--ts50 PATH] [--train] [--test-r PATH] [--test-p PATH] [--n-samples N]

optional arguments:
  -h, --help          show this help message and exit
  --models-dir PATH   directory to save trained models, default=./models/
  --num-workers N     number of threads for loading data, default=4
  --max-nodes N       max number of nodes per batch, default=3000
  --epochs N          training epochs, default=100
  --cath-data PATH    location of CATH dataset, default=./data/chain_set.jsonl
  --cath-splits PATH  location of CATH split file, default=./data/chain_set_splits.json
  --ts50 PATH         location of TS50 dataset, default=./data/ts50.json
  --train             train a model
  --test-r PATH       evaluate a trained model on recovery (without training)
  --test-p PATH       evaluate a trained model on perplexity (without training)
  --n-samples N       number of sequences to sample (if testing recovery), default=100

Confusion matrices: Note that the values are normalized such that each row (corresponding to true class) sums to 1000, with the actual number of residues in that class printed under the "Count" column.

Sampling

To sample from a CPDModel, prepare a ProteinGraphDataset, but do NOT pass into a DataLoader. The sequences are not used, so placeholders can be used for the seq attributes of the original structures dicts.

protein = dataset[i]
nodes = (protein.node_s, protein.node_v)
edges = (protein.edge_s, protein.edge_v)
    
sample = model.sample(nodes, protein.edge_index,  # shape = (n_samples, n_nodes)
                      edges, n_samples=n_samples)

The output will be an int tensor, with mappings corresponding to those used when training the model.

ATOM3D

We provide models and dataloaders for all ATOM3D tasks in gvp.atom3d, as well as a training and testing script in run_atom3d.py. This also supports loading pretrained weights for transfer learning experiments.

Models / data loaders

The GVP-GNNs for ATOM3D are supplied in gvp.atom3d and are named after each task: gvp.atom3d.MSPModel, gvp.atom3d.PPIModel, etc. All of these extend the base class gvp.atom3d.BaseModel. These classes take no arguments at initialization, take in a torch_geometric.data.Batch representation of a batch of structures, and return an output corresponding to the task. Details vary based on the exact task---see the docstrings.

psr_model = gvp.atom3d.PSRModel()

gvp.atom3d also includes data loaders to produce torch_geometric.data.Batch objects from an underlying atom3d.datasets.LMDBDataset. In the case of all tasks except PPI and RES, these are in the form of callable transform objects---gvp.atom3d.SMPTransform, gvp.atom3d.RSRTransform, etc---which should be passed into the constructor of a atom3d.datasets.LMDBDataset:

psr_dataset = atom3d.datasets.LMDBDataset(path_to_dataset,
                    transform=gvp.atom3d.PSRTransform())

On the other hand, gvp.atom3d.PPIDataset and gvp.atom3d.RESDataset take the place of / are wrappers around the atom3d.datasets.LMDBDataset:

ppi_dataset = gvp.atom3d.PPIDataset(path_to_dataset)
res_dataset = gvp.atom3d.RESDataset(path_to_dataset, path_to_split) # see docstring

All datasets must be then wrapped in a torch_geometric.data.DataLoader:

psr_dataloader = torch_geometric.data.DataLoader(psr_dataset, batch_size=batch_size)

The dataloaders can be directly iterated over to yield torch_geometric.data.Batch objects, which can then be passed into the models.

for batch in psr_dataloader:
    pred = psr_model(batch) # pred.shape = (batch_size,)

Training / testing

To run training / testing on ATOM3D, download the datasets as described here. Modify the function get_datasets in run_atom3d.py with the paths to the datasets. Then run:

$ python run_atom3d.py -h

usage: run_atom3d.py [-h] [--num-workers N] [--smp-idx IDX]
                     [--lba-split SPLIT] [--batch SIZE] [--train-time MINUTES]
                     [--val-time MINUTES] [--epochs N] [--test PATH]
                     [--lr RATE] [--load PATH]
                     TASK

positional arguments:
  TASK                  {PSR, RSR, PPI, RES, MSP, SMP, LBA, LEP}

optional arguments:
  -h, --help            show this help message and exit
  --num-workers N       number of threads for loading data, default=4
  --smp-idx IDX         label index for SMP, in range 0-19
  --lba-split SPLIT     identity cutoff for LBA, 30 (default) or 60
  --batch SIZE          batch size, default=8
  --train-time MINUTES  maximum time between evaluations on valset,
                        default=120 minutes
  --val-time MINUTES    maximum time per evaluation on valset, default=20
                        minutes
  --epochs N            training epochs, default=50
  --test PATH           evaluate a trained model
  --lr RATE             learning rate
  --load PATH           initialize first 2 GNN layers with pretrained weights

For example:

# train a model
python run_atom3d.py PSR

# train a model with pretrained weights
python run_atom3d.py PSR --load PATH

# evaluate a model
python run_atom3d.py PSR --test PATH

Acknowledgements

Portions of the input data pipeline were adapted from Ingraham, et al, NeurIPS 2019. We thank Pratham Soni for portions of the implementation in PyTorch.

Citation

@inproceedings{
    jing2021learning,
    title={Learning from Protein Structure with Geometric Vector Perceptrons},
    author={Bowen Jing and Stephan Eismann and Patricia Suriana and Raphael John Lamarre Townshend and Ron Dror},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=1YLJDvSx6J4}
}

@article{jing2021equivariant,
  title={Equivariant Graph Neural Networks for 3D Macromolecular Structure},
  author={Jing, Bowen and Eismann, Stephan and Soni, Pratham N and Dror, Ron O},
  journal={arXiv preprint arXiv:2106.03843},
  year={2021}
}
Owner
Dror Lab
Ron Dror's computational biology laboratory at Stanford University
Dror Lab
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023