PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Overview

Hand Biomechanical Constraints Pytorch

Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020).

This project reimplement following components :

  1. 3 kinds of biomechanical soft constraints
  2. integrate BMC into training procedure (PyTorch version)

Usage

  • Retrieve the code
git clone https://github.com/MengHao666/Hand-BMC-pytorch
cd Hand-BMC-pytorch
  • Create and activate the virtual environment with python dependencies
conda env create --file=environment.yml
conda activate bmc

Download data

Download 3D joint location data joints.zip Google Drive or Baidu Pan (2pip), and . These statistics are from following datasets:

Note the data from these datasets under their own licenses.

Calculate BMC

BMC

Run the code

python calculate_bmc.py

You will get

  • bone_len_max.npy bone_len_min.npy for bone length limits
  • curvatures_max.npy curvatures_min.npy for Root bones' curvatures
  • PHI_max.npy PHI_min.npy for Root bones' angular distance
  • joint_angles.npy for Joint angles

And if u want to check the coordinate system, run the code

cd utils
python calculate_joint_angles.py
  • red ,green, blue arrows refer to X,Y,Z of local coordinate system respectively;
  • dark arrows refer to bones;
  • pink arrows refer to bone projection into X-Z plane of local coordinate system;
One view Another view

Run the code

python calculate_convex_hull.py

You will get CONVEX_HULLS.npy, i.e. convex hulls to encircle the anatomically plausible joint angles.

And you will also see every convex hull like following figure:

BMC

  • "Bone PIP" means the bone from MCP joint to PIP joint in thumb
  • flexion and abduction is two kinds of angle describing joint rotation
  • "ori_convex_hull" means the original convex hull calculated from all joint angle points
  • "rdp_convex_hull" means convex hull simplified by the Ramer-Douglas-Peucker algorithm, a polygon simplification algorithm
  • "del_convex_hull" means convex hull further simplified by a greedy algorithm
  • "rectangle" means the minimal rectangle to surround all joint angle points

Run the code

python plot.py

You will see all the convex hulls

BMC

Integrate BMC into training (PyTorch version)

Run the code

python weakloss.py

Experiment results

To check influence of BMC, instead of reimplementing the network of origin paper, I integrate BMC into my own project,

Train and evaluation curve

(AUC means 3D PCK, and ACC_HM means 2D PCK) teaser

3D PCK AUC Diffenence

Dataset DetNet DetNet+BMC
RHD 0.9339 0.9364
STB 0.8744 0.8778
DO 0.9378 0.9475
EO 0.9270 0.9182

Note

  • Adjusting training parameters carefully, longer training time might further boost accuracy.
  • As BMC is a weakly supervised method, it may only make predictions more physically plausible,but cannot boost AUC performance strongly when strong supervision is used.

Limitation

  • Due to time limitation, I didn't reimplement the network and experiments of original paper.
  • There is a little difference between original paper and my reimplementation. But most of them match.

Citation

This is the unofficial pytorch reimplementation of the paper "Weakly supervised 3d hand pose estimation via biomechanical constraints (ECCV 2020).

If you find the project helpful, please star this project and cite them:

@article{spurr2020weakly,
  title={Weakly supervised 3d hand pose estimation via biomechanical constraints},
  author={Spurr, Adrian and Iqbal, Umar and Molchanov, Pavlo and Hilliges, Otmar and Kautz, Jan},
  journal={arXiv preprint arXiv:2003.09282},
  volume={8},
  year={2020},
  publisher={Springer}
}
Owner
Hao Meng
Master student at Beihang University , mainly interested in hand pose estimation.
Hao Meng
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022