《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Overview

Dual-Resolution Correspondence Network

Dual-Resolution Correspondence Network, NeurIPS 2020

Dependency

All dependencies are included in asset/dualrcnet.yml. You need to install conda first, and then run

conda env create --file asset/dualrcnet.yml 

To activate the environment, run

conda activate dualrcnet

Preparing data

We train our model on MegaDepth dataset. To prepare for the data, you need to download the MegaDepth SfM models from the MegaDepth website and download training_pairs.txt and validation_pairs.txt from this link. Then place both training_pairs.txt and validation_pairs.txt files under the downloaded directory MegaDepth_v1_SfM.

Training

After downloading the training data, run

python train.py --training_file path/to/training_pairs.txt --validation_file path/to/validation_pairs.txt --image_path path/to/MegaDepth_v1_SfM

Pre-trained model

We also provide our pre-trained model. You can download dualrc-net.pth.tar from this link and place it under the directory trained_models.

Evaluation on HPatches

The dataset can be downloaded from HPatches repo. You need to download HPatches full sequences.
After downloading the dataset, then:

  1. Browse to HPatches/
  2. Run python eval_hpatches.py --checkpoint path/to/model --root path/to/parent/directory/of/hpatches_sequences. This will generate a text file which stores the result in current directory.
  3. Open draw_graph.py. Change relevent path accordingly and run the script to draw the result.

We provide results of DualRC-Net alongside with results of other methods in directory cache-top.

Evaluation on InLoc

In order to run the InLoc evaluation, you first need to clone the InLoc demo repo, and download and compile all the required depedencies. Then:

  1. Browse to inloc/.
  2. Run python eval_inloc_extract.py adjusting the checkpoint and experiment name. This will generate a series of matches files in the inloc/matches/ directory that then need to be fed to the InLoc evaluation Matlab code.
  3. Modify the inloc/eval_inloc_compute_poses.m file provided to indicate the path of the InLoc demo repo, and the name of the experiment (the particular directory name inside inloc/matches/), and run it using Matlab.
  4. Use the inloc/eval_inloc_generate_plot.m file to plot the results from shortlist file generated in the previous stage: /your_path_to/InLoc_demo_old/experiment_name/shortlist_densePV.mat. Precomputed shortlist files are provided in inloc/shortlist.

Evaluation on Aachen Day-Night

In order to run the Aachen Day-Night evaluation, you first need to clone the Visualization benchmark repo, and download and compile all the required depedencies (note that you'll need to compile Colmap if you have not done so yet). Then:

  1. Browse to aachen_day_and_night/.
  2. Run python eval_aachen_extract.py adjusting the checkpoint and experiment name.
  3. Copy the eval_aachen_reconstruct.py file to visuallocalizationbenchmark/local_feature_evaluation and run it in the following way:
python eval_aachen_reconstruct.py 
	--dataset_path /path_to_aachen/aachen 
	--colmap_path /local/colmap/build/src/exe
	--method_name experiment_name
  1. Upload the file /path_to_aachen/aachen/Aachen_eval_[experiment_name].txt to https://www.visuallocalization.net/ to get the results on this benchmark.

BibTex

If you use this code, please cite our paper

@inproceedings{li20dualrc,
 author		= {Xinghui Li and Kai Han and Shuda Li and Victor Prisacariu},
 title   	= {Dual-Resolution Correspondence Networks},
 booktitle 	= {Conference on Neural Information Processing Systems (NeurIPS)},
 year    	= {2020},
}

Acknowledgement

Our code is based on the wonderful code provided by NCNet, Sparse-NCNet and ANC-Net.

An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022