《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Overview

Dual-Resolution Correspondence Network

Dual-Resolution Correspondence Network, NeurIPS 2020

Dependency

All dependencies are included in asset/dualrcnet.yml. You need to install conda first, and then run

conda env create --file asset/dualrcnet.yml 

To activate the environment, run

conda activate dualrcnet

Preparing data

We train our model on MegaDepth dataset. To prepare for the data, you need to download the MegaDepth SfM models from the MegaDepth website and download training_pairs.txt and validation_pairs.txt from this link. Then place both training_pairs.txt and validation_pairs.txt files under the downloaded directory MegaDepth_v1_SfM.

Training

After downloading the training data, run

python train.py --training_file path/to/training_pairs.txt --validation_file path/to/validation_pairs.txt --image_path path/to/MegaDepth_v1_SfM

Pre-trained model

We also provide our pre-trained model. You can download dualrc-net.pth.tar from this link and place it under the directory trained_models.

Evaluation on HPatches

The dataset can be downloaded from HPatches repo. You need to download HPatches full sequences.
After downloading the dataset, then:

  1. Browse to HPatches/
  2. Run python eval_hpatches.py --checkpoint path/to/model --root path/to/parent/directory/of/hpatches_sequences. This will generate a text file which stores the result in current directory.
  3. Open draw_graph.py. Change relevent path accordingly and run the script to draw the result.

We provide results of DualRC-Net alongside with results of other methods in directory cache-top.

Evaluation on InLoc

In order to run the InLoc evaluation, you first need to clone the InLoc demo repo, and download and compile all the required depedencies. Then:

  1. Browse to inloc/.
  2. Run python eval_inloc_extract.py adjusting the checkpoint and experiment name. This will generate a series of matches files in the inloc/matches/ directory that then need to be fed to the InLoc evaluation Matlab code.
  3. Modify the inloc/eval_inloc_compute_poses.m file provided to indicate the path of the InLoc demo repo, and the name of the experiment (the particular directory name inside inloc/matches/), and run it using Matlab.
  4. Use the inloc/eval_inloc_generate_plot.m file to plot the results from shortlist file generated in the previous stage: /your_path_to/InLoc_demo_old/experiment_name/shortlist_densePV.mat. Precomputed shortlist files are provided in inloc/shortlist.

Evaluation on Aachen Day-Night

In order to run the Aachen Day-Night evaluation, you first need to clone the Visualization benchmark repo, and download and compile all the required depedencies (note that you'll need to compile Colmap if you have not done so yet). Then:

  1. Browse to aachen_day_and_night/.
  2. Run python eval_aachen_extract.py adjusting the checkpoint and experiment name.
  3. Copy the eval_aachen_reconstruct.py file to visuallocalizationbenchmark/local_feature_evaluation and run it in the following way:
python eval_aachen_reconstruct.py 
	--dataset_path /path_to_aachen/aachen 
	--colmap_path /local/colmap/build/src/exe
	--method_name experiment_name
  1. Upload the file /path_to_aachen/aachen/Aachen_eval_[experiment_name].txt to https://www.visuallocalization.net/ to get the results on this benchmark.

BibTex

If you use this code, please cite our paper

@inproceedings{li20dualrc,
 author		= {Xinghui Li and Kai Han and Shuda Li and Victor Prisacariu},
 title   	= {Dual-Resolution Correspondence Networks},
 booktitle 	= {Conference on Neural Information Processing Systems (NeurIPS)},
 year    	= {2020},
}

Acknowledgement

Our code is based on the wonderful code provided by NCNet, Sparse-NCNet and ANC-Net.

Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
A really easy-to-use and powerful sudoku solver.

SodukuSolver This is a really useful sudoku solver with a Qt gui. USAGE Enter the numbers in and click "RUN"! If you don't want to wait, simply press

Ujhhgtg Teams 11 Jun 02, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023