CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Related tags

Deep LearningF-LSeSim
Overview

Spatially-Correlative Loss

arXiv | website


We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Tasks". Based on the inherent self-similarity of object, we propose a new structure-preserving loss for one-sided unsupervised I2I network. The new loss will deal only with spatial relationship of repeated signal, regardless of their original absolute value.

The Spatially-Correlative Loss for Various Image Translation Tasks
Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai
NTU and Monash University
In CVPR2021

ToDo

  • release the single-modal I2I model
  • a simple example to use the proposed loss

Example Results

Unpaired Image-to-Image Translation

Single Image Translation

More results on project page

Getting Started

Installation

This code was tested with Pytorch 1.7.0, CUDA 10.2, and Python 3.7

pip install visdom dominate
  • Clone this repo:
git clone https://github.com/lyndonzheng/F-LSeSim
cd F-LSeSim

Datasets

Please refer to the original CUT and CycleGAN to download datasets and learn how to create your own datasets.

Training

  • Train the single-modal I2I translation model:
sh ./scripts/train_sc.sh 
  • Set --use_norm for cosine similarity map, the default similarity is dot-based attention score. --learned_attn, --augment for the learned self-similarity.

  • To view training results and loss plots, run python -m visdom.server and copy the URL http://localhost:port.

  • Training models will be saved under the checkpoints folder.

  • The more training options can be found in the options folder.

  • Train the single-image translation model:

sh ./scripts/train_sinsc.sh 

As the multi-modal I2I translation model was trained on MUNIT, we would not plan to merge the code to this repository. If you wish to obtain multi-modal results, please contact us at [email protected].

Testing

  • Test the single-modal I2I translation model:
sh ./scripts/test_sc.sh
  • Test the single-image translation model:
sh ./scripts/test_sinsc.sh
  • Test the FID score for all training epochs:
sh ./scripts/test_fid.sh

Pretrained Models

Download the pre-trained models (will be released soon) using the following links and put them undercheckpoints/ directory.

Citation

@inproceedings{zheng2021spatiallycorrelative,
  title={The Spatially-Correlative Loss for Various Image Translation Tasks},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Acknowledge

Our code is developed based on CUT and CycleGAN. We also thank pytorch-fid for FID computation, LPIPS for diversity score, and D&C for density and coverage evaluation.

Owner
Chuanxia Zheng
Chuanxia Zheng
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023