Robust & Reliable Route Recommendation on Road Networks

Related tags

Deep LearningNeuroMLR
Overview

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks

This repository is the official implementation of NeuroMLR: Robust & Reliable Route Recommendation on Road Networks.

Introduction

Predicting the most likely route from a source location to a destination is a core functionality in mapping services. Although the problem has been studied in the literature, two key limitations remain to be addressed. First, a significant portion of the routes recommended by existing methods fail to reach the destination. Second, existing techniques are transductive in nature; hence, they fail to recommend routes if unseen roads are encountered at inference time. We address these limitations through an inductive algorithm called NEUROMLR. NEUROMLR learns a generative model from historical trajectories by conditioning on three explanatory factors: the current location, the destination, and real-time traffic conditions. The conditional distributions are learned through a novel combination of Lipschitz embeddings with Graph Convolutional Networks (GCN) on historical trajectories.

Requirements

Dependencies

The code has been tested for Python version 3.8.10 and CUDA 10.2. We recommend that you use the same.

To create a virtual environment using conda,

conda create -n ENV_NAME python=3.8.10
conda activate ENV_NAME

All dependencies can be installed by running the following commands -

pip install -r requirements.txt
pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install --no-index torch-sparse -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install --no-index torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-geometric

Data

Download the preprocessed data and unzip the downloaded .zip file.

Set the PREFIX_PATH variable in my_constants.py as the path to this extracted folder.

For each city (Chengdu, Harbin, Porto, Beijing, CityIndia), there are two types of data:

1. Mapmatched pickled trajectories

Stored as a python pickled list of tuples, where each tuple is of the form (trip_id, trip, time_info). Here each trip is a list of edge identifiers.

2. OSM map data

In the map folder, there are the following files-

  1. nodes.shp : Contains OSM node information (global node id mapped to (latitude, longitude))
  2. edges.shp : Contains network connectivity information (global edge id mapped to corresponding node ids)
  3. graph_with_haversine.pkl : Pickled NetworkX graph corresponding to the OSM data

Training

After setting PREFIX_PATH in the my_constants.py file, the training script can be run directly as follows-

python train.py -dataset beijing -gnn GCN -lipschitz 

Other functionality can be toggled by adding them as arguments, for example,

python train.py -dataset DATASET -gpu_index GPU_ID -eval_frequency EVALUATION_PERIOD_IN_EPOCHS -epochs NUM_EPOCHS 
python train.py -traffic
python train.py -check_script
python train.py -cpu

Brief description of other arguments/functionality -

Argument Functionality
-check_script to run on a fixed subset of train_data, as a sanity test
-cpu forces computation on a cpu instead of the available gpu
-gnn can choose between a GCN or a GAT
-gnn_layers number of layers for the graph neural network used
-epochs number of epochs to train for
-percent_data percentage data used for training
-fixed_embeddings to make the embeddings static, they aren't learnt as parameters of the network
-embedding_size the dimension of embeddings used
-hidden_size hidden dimension for the MLP
-traffic to toggle the attention module

For exact details about the expected format and possible inputs please refer to the args.py and my_constants.py files.

Evaluation

The training code generates logs for evaluation. To evaluate any pretrained model, run

python eval.py -dataset DATASET -model_path MODEL_PATH

There should be two files under MODEL_PATH, namely model.pt and model_support.pkl (refer to the function save_model() defined in train.py to understand these files).

Pre-trained Models

You can find the pretrained models in the same zip as preprocessed data. To evaluate the models, set PREFIX_PATH in the my_constants.py file and run

python eval.py -dataset DATASET

Results

We present the performance results of both versions of NeuroMLR across five datasets.

NeuroMLR-Greedy

Dataset Precision(%) Recall(%) Reachability(%) Reachability distance (km)
Beijing 75.6 74.5 99.1 0.01
Chengdu 86.1 83.8 99.9 0.0002
CityIndia 74.3 70.1 96.1 0.03
Harbin 59.6 48.6 99.1 0.02
Porto 77.3 70.7 99.6 0.001

NeuroMLR-Dijkstra

Since NeuroMLR-Dijkstra guarantees reachability, the reachability metrics are not relevant here.

Dataset Precision(%) Recall(%)
Beijing 77.9 76.5
Chengdu 86.7 84.2
CityIndia 77.9 73.1
Harbin 66.1 49.6
Porto 79.2 70.9

Contributing

If you'd like to contribute, open an issue on this GitHub repository. All contributions are welcome!

Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020