Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

Related tags

Deep Learningtf-imle
Overview

tf-imle

Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021 paper Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions.

I-MLE is also available as a PyTorch library: https://github.com/uclnlp/torch-imle

Introduction

Implicit MLE (I-MLE) makes it possible to include discrete combinatorial optimization algorithms, such as Dijkstra's algorithm or integer linear programming (ILP) solvers, as well as complex discrete probability distributions in standard deep learning architectures. The figure below illustrates the setting I-MLE was developed for. is a standard neural network, mapping some input to the input parameters of a discrete combinatorial optimization algorithm or a discrete probability distribution, depicted as the black box. In the forward pass, the discrete component is executed and its discrete output fed into a downstream neural network . Now, with I-MLE it is possible to estimate gradients of with respect to a loss function, which are used during backpropagation to update the parameters of the upstream neural network.

Illustration of the problem addressed by I-MLE

The core idea of I-MLE is that it defines an implicit maximum likelihood objective whose gradients are used to update upstream parameters of the model. Every instance of I-MLE requires two ingredients:

  1. A method to approximately sample from a complex and possibly intractable distribution. For this we use Perturb-and-MAP (aka the Gumbel-max trick) and propose a novel family of noise perturbations tailored to the problem at hand.
  2. A method to compute a surrogate empirical distribution: Vanilla MLE reduces the KL divergence between the current distribution and the empirical distribution. Since in our setting, we do not have access to such an empirical distribution, we have to design surrogate empirical distributions which we term target distributions. Here we propose two families of target distributions which are widely applicable and work well in practice.

Requirements:

TensorFlow 2 implementation:

  • tensorflow==2.3.0 or tensorflow-gpu==2.3.0
  • numpy==1.18.5
  • matplotlib==3.1.1
  • scikit-learn==0.24.1
  • tensorflow-probability==0.7.0

PyTorch implementation:

Example: I-MLE as a Layer

The following is an instance of I-MLE implemented as a layer. This is a class where the optimization problem is computing the k-subset configuration, the target distribution is based on perturbation-based implicit differentiation, and the perturb-and-MAP noise perturbations are drawn from the sum-of-gamma distribution.

class IMLESubsetkLayer(tf.keras.layers.Layer):
    
    def __init__(self, k, _tau=10.0, _lambda=10.0):
        super(IMLESubsetkLayer, self).__init__()
        # average number of 1s in a solution to the optimization problem
        self.k = k
        # the temperature at which we want to sample
        self._tau = _tau
        # the perturbation strength (here we use a target distribution based on perturbation-based implicit differentiation
        self._lambda = _lambda  
        # the samples we store for the backward pass
        self.samples = None 
        
    @tf.function
    def sample_sum_of_gamma(self, shape):
        
        s = tf.map_fn(fn=lambda t: tf.random.gamma(shape, 1.0/self.k, self.k/t), 
                  elems=tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]))   
        # now add the samples
        s = tf.reduce_sum(s, 0)
        # the log(m) term
        s = s - tf.math.log(10.0)
        # divide by k --> each s[c] has k samples whose sum is distributed as Gumbel(0, 1)
        s = self._tau * (s / self.k)

        return s
    
    @tf.function
    def sample_discrete_forward(self, logits): 
        self.samples = self.sample_sum_of_gamma(tf.shape(logits))
        gamma_perturbed_logits = logits + self.samples
        # gamma_perturbed_logits is the input to the combinatorial opt algorithm
        # the next two lines can be replaced by a custom black-box algorithm call
        threshold = tf.expand_dims(tf.nn.top_k(gamma_perturbed_logits, self.k, sorted=True)[0][:,-1], -1)
        y = tf.cast(tf.greater_equal(gamma_perturbed_logits, threshold), tf.float32)
        
        return y
    
    @tf.function
    def sample_discrete_backward(self, logits):     
        gamma_perturbed_logits = logits + self.samples
        # gamma_perturbed_logits is the input to the combinatorial opt algorithm
        # the next two lines can be replaced by a custom black-box algorithm call
        threshold = tf.expand_dims(tf.nn.top_k(gamma_perturbed_logits, self.k, sorted=True)[0][:,-1], -1)
        y = tf.cast(tf.greater_equal(gamma_perturbed_logits, threshold), tf.float32)
        return y
    
    @tf.custom_gradient
    def subset_k(self, logits, k):

        # sample discretely with perturb and map
        z_train = self.sample_discrete_forward(logits)
        # compute the top-k discrete values
        threshold = tf.expand_dims(tf.nn.top_k(logits, self.k, sorted=True)[0][:,-1], -1)
        z_test = tf.cast(tf.greater_equal(logits, threshold), tf.float32)
        # at training time we sample, at test time we take the argmax
        z_output = K.in_train_phase(z_train, z_test)
        
        def custom_grad(dy):

            # we perturb (implicit diff) and then resuse sample for perturb and MAP
            map_dy = self.sample_discrete_backward(logits - (self._lambda*dy))
            # we now compute the gradients as the difference (I-MLE gradients)
            grad = tf.math.subtract(z_train, map_dy)
            # return the gradient            
            return grad, k

        return z_output, custom_grad

Reference

@inproceedings{niepert21imle,
  author    = {Mathias Niepert and
               Pasquale Minervini and
               Luca Franceschi},
  title     = {Implicit {MLE:} Backpropagating Through Discrete Exponential Family
               Distributions},
  booktitle = {NeurIPS},
  series    = {Proceedings of Machine Learning Research},
  publisher = {{PMLR}},
  year      = {2021}
}
Owner
NEC Laboratories Europe
Research software developed at NEC Laboratories Europe
NEC Laboratories Europe
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022