Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Overview

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

This repository contains the code used for the experiments in "Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness" published at SIGIR 2021 (preprint available).

Citation

If you use this code to produce results for your scientific publication, or if you share a copy or fork, please refer to our SIGIR 2021 paper:

@inproceedings{oosterhuis2021plrank,
  Author = {Oosterhuis, Harrie},
  Booktitle = {Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR`21)},
  Organization = {ACM},
  Title = {Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness},
  Year = {2021}
}

License

The contents of this repository are licensed under the MIT license. If you modify its contents in any way, please link back to this repository.

Usage

This code makes use of Python 3, the numpy and the tensorflow packages, make sure they are installed.

A file is required that explains the location and details of the LTR datasets available on the system, for the Yahoo! Webscope, MSLR-Web30k, and Istella datasets an example file is available. Copy the file:

cp example_datasets_info.txt local_dataset_info.txt

Open this copy and edit the paths to the folders where the train/test/vali files are placed.

Here are some command-line examples that illustrate how the results in the paper can be replicated. First create a folder to store the resulting models:

mkdir local_output

To optimize NDCG use run.py with the --loss flag to indicate the loss to use (PL_rank_1/PL_rank_2/lambdaloss/pairwise/policygradient/placementpolicygradient); --cutoff indicates the top-k that is being optimized, e.g. 5 for [email protected]; --num_samples the number of samples to use per gradient estimation (with dynamic for the dynamic strategy); --dataset indicates the dataset name, e.g. Webscope_C14_Set1. The following command optimizes [email protected] with PL-Rank-2 and the dynamic sampling strategy on the Yahoo! dataset:

python3 run.py local_output/yahoo_ndcg5_dynamic_plrank2.txt --num_samples dynamic --loss PL_rank_2 --cutoff 5 --dataset Webscope_C14_Set1

To optimize the disparity metric for exposure fairness use fairrun.py this has the additional flag --num_exposure_samples for the number of samples to use to estimate exposure (this must always be a greater number than --num_samples). The following command optimizes disparity with PL-Rank-2 and the dynamic sampling strategy on the Yahoo! dataset with 1000 samples for estimating exposure:

python3 fairrun.py local_output/yahoo_fairness_dynamic_plrank2.txt --num_samples dynamic --loss PL_rank_2 --cutoff 5 --num_exposure_samples 1000 --dataset Webscope_C14_Set1
Owner
H.R. Oosterhuis
H.R. Oosterhuis
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022