Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Overview

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

This repository contains the code used for the experiments in "Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness" published at SIGIR 2021 (preprint available).

Citation

If you use this code to produce results for your scientific publication, or if you share a copy or fork, please refer to our SIGIR 2021 paper:

@inproceedings{oosterhuis2021plrank,
  Author = {Oosterhuis, Harrie},
  Booktitle = {Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR`21)},
  Organization = {ACM},
  Title = {Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness},
  Year = {2021}
}

License

The contents of this repository are licensed under the MIT license. If you modify its contents in any way, please link back to this repository.

Usage

This code makes use of Python 3, the numpy and the tensorflow packages, make sure they are installed.

A file is required that explains the location and details of the LTR datasets available on the system, for the Yahoo! Webscope, MSLR-Web30k, and Istella datasets an example file is available. Copy the file:

cp example_datasets_info.txt local_dataset_info.txt

Open this copy and edit the paths to the folders where the train/test/vali files are placed.

Here are some command-line examples that illustrate how the results in the paper can be replicated. First create a folder to store the resulting models:

mkdir local_output

To optimize NDCG use run.py with the --loss flag to indicate the loss to use (PL_rank_1/PL_rank_2/lambdaloss/pairwise/policygradient/placementpolicygradient); --cutoff indicates the top-k that is being optimized, e.g. 5 for [email protected]; --num_samples the number of samples to use per gradient estimation (with dynamic for the dynamic strategy); --dataset indicates the dataset name, e.g. Webscope_C14_Set1. The following command optimizes [email protected] with PL-Rank-2 and the dynamic sampling strategy on the Yahoo! dataset:

python3 run.py local_output/yahoo_ndcg5_dynamic_plrank2.txt --num_samples dynamic --loss PL_rank_2 --cutoff 5 --dataset Webscope_C14_Set1

To optimize the disparity metric for exposure fairness use fairrun.py this has the additional flag --num_exposure_samples for the number of samples to use to estimate exposure (this must always be a greater number than --num_samples). The following command optimizes disparity with PL-Rank-2 and the dynamic sampling strategy on the Yahoo! dataset with 1000 samples for estimating exposure:

python3 fairrun.py local_output/yahoo_fairness_dynamic_plrank2.txt --num_samples dynamic --loss PL_rank_2 --cutoff 5 --num_exposure_samples 1000 --dataset Webscope_C14_Set1
Owner
H.R. Oosterhuis
H.R. Oosterhuis
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022