SegNet-like Autoencoders in TensorFlow

Overview

SegNet

SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a minified architecture and more.

Configuration

Create a config.py file, containing color maps, working dataset and other options.

autoencoder = 'segnet'
colors = {
  'segnet-32': [
    [64, 128, 64],   # Animal
    [192, 0, 128],   # Archway
    [0, 128, 192],   # Bicyclist
    [0, 128, 64],    # Bridge
    [128, 0, 0],     # Building
    [64, 0, 128],    # Car
    [64, 0, 192],    # CartLuggagePram
    [192, 128, 64],  # Child
    [192, 192, 128], # Column_Pole
    [64, 64, 128],   # Fence
    [128, 0, 192],   # LaneMkgsDriv
    [192, 0, 64],    # LaneMkgsNonDriv
    [128, 128, 64],  # Misc_Text
    [192, 0, 192],   # MotorcycleScooter
    [128, 64, 64],   # OtherMoving
    [64, 192, 128],  # ParkingBlock
    [64, 64, 0],     # Pedestrian
    [128, 64, 128],  # Road
    [128, 128, 192], # RoadShoulder
    [0, 0, 192],     # Sidewalk
    [192, 128, 128], # SignSymbol
    [128, 128, 128], # Sky
    [64, 128, 192],  # SUVPickupTruck
    [0, 0, 64],      # TrafficCone
    [0, 64, 64],     # TrafficLight
    [192, 64, 128],  # Train
    [128, 128, 0],   # Tree
    [192, 128, 192], # Truck_Bus
    [64, 0, 64],     # Tunnel
    [192, 192, 0],   # VegetationMisc
    [0, 0, 0],       # Void
    [64, 192, 0]     # Wall
  ]
}
gpu_memory_fraction = 0.7
strided = True
working_dataset = 'segnet-32'

Two kinds of architectures are supported at the moment: the original SegNet Encoder-Decoder (segnet), and a smaller version of the same (mini), which can be used for simpler segmentation problems. I suggest to use strided = True for faster and more reliable results.

The dataset_name needs to match the data directories you create in your input folder. You can use segnet-32 and segnet-13 to replicate the aforementioned Kendall et al. experiments.

Train and test

Generate your TFRecords using tfrecorder.py. In order to do so, put your PNG images in a raw folder, as follows:

input/
    raw/
        train/
        train-labels/
        test/
        test-labels/

Once you have your TFRecords, train SegNet with python src/train.py. Analogously, test it with python src/test.py.

Owner
Andrea Azzini
Andrea Azzini
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022