SegNet-like Autoencoders in TensorFlow

Overview

SegNet

SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a minified architecture and more.

Configuration

Create a config.py file, containing color maps, working dataset and other options.

autoencoder = 'segnet'
colors = {
  'segnet-32': [
    [64, 128, 64],   # Animal
    [192, 0, 128],   # Archway
    [0, 128, 192],   # Bicyclist
    [0, 128, 64],    # Bridge
    [128, 0, 0],     # Building
    [64, 0, 128],    # Car
    [64, 0, 192],    # CartLuggagePram
    [192, 128, 64],  # Child
    [192, 192, 128], # Column_Pole
    [64, 64, 128],   # Fence
    [128, 0, 192],   # LaneMkgsDriv
    [192, 0, 64],    # LaneMkgsNonDriv
    [128, 128, 64],  # Misc_Text
    [192, 0, 192],   # MotorcycleScooter
    [128, 64, 64],   # OtherMoving
    [64, 192, 128],  # ParkingBlock
    [64, 64, 0],     # Pedestrian
    [128, 64, 128],  # Road
    [128, 128, 192], # RoadShoulder
    [0, 0, 192],     # Sidewalk
    [192, 128, 128], # SignSymbol
    [128, 128, 128], # Sky
    [64, 128, 192],  # SUVPickupTruck
    [0, 0, 64],      # TrafficCone
    [0, 64, 64],     # TrafficLight
    [192, 64, 128],  # Train
    [128, 128, 0],   # Tree
    [192, 128, 192], # Truck_Bus
    [64, 0, 64],     # Tunnel
    [192, 192, 0],   # VegetationMisc
    [0, 0, 0],       # Void
    [64, 192, 0]     # Wall
  ]
}
gpu_memory_fraction = 0.7
strided = True
working_dataset = 'segnet-32'

Two kinds of architectures are supported at the moment: the original SegNet Encoder-Decoder (segnet), and a smaller version of the same (mini), which can be used for simpler segmentation problems. I suggest to use strided = True for faster and more reliable results.

The dataset_name needs to match the data directories you create in your input folder. You can use segnet-32 and segnet-13 to replicate the aforementioned Kendall et al. experiments.

Train and test

Generate your TFRecords using tfrecorder.py. In order to do so, put your PNG images in a raw folder, as follows:

input/
    raw/
        train/
        train-labels/
        test/
        test-labels/

Once you have your TFRecords, train SegNet with python src/train.py. Analogously, test it with python src/test.py.

Owner
Andrea Azzini
Andrea Azzini
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022