PaRT: Parallel Learning for Robust and Transparent AI

Related tags

Deep LearningPaRT
Overview

PaRT: Parallel Learning for Robust and Transparent AI

This repository contains the code for PaRT, an algorithm for training a base network on multiple tasks in parallel. The diagram of PaRT is shown in the figure below.

Below, we provide details regarding dependencies and the instructions for running the code for each experiment. We have prepared scripts for each experiment to help the user have a smooth experience.

Dependencies

  • python >= 3.8
  • pytorch >= 1.7
  • scikit-learn
  • torchvision
  • tensorboard
  • matplotlib
  • pillow
  • psutil
  • scipy
  • numpy
  • tqdm

SETUP ENVIRONMENT

To setup the conda env and create the required directories go to the scripts directory and run the following commands in the terminal:

conda init bash
bash -i setupEnv.sh

Check that the final output of these commands is:

Installed torch version {---}
Virtual environment was made successfully

CIFAR 100 EXPERIMENTS

Instructions to run the code for the CIFAR100 experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR100Baseline.sh ../../scripts/test_case0_cifar100_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar100_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR100Parallel.sh ../../scripts/test_case0_cifar100_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar100_parallel.json to 1,2,3, or 4.

CIFAR 10 AND CIFAR 100 EXPERIMENTS

Instructions to run the code for the CIFAR10 and CIFAR100 experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR10_100Baseline.sh ../../scripts/test_case0_cifar10_100_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar10_100_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR10_100Parallel.sh ../../scripts/test_case0_cifar10_100_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar10_100_parallel.json to 1,2,3, or 4.

FIVETASKS EXPERIMENTS

The dataset for this experiment can be downloaded from the link provided by the CPG GitHub Page or Here. Instructions to run the code for the FiveTasks experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i run5TasksBaseline.sh ../../scripts/test_case0_5tasks_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_5tasks_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i run5TasksParallel.sh ../../scripts/test_case0_5tasks_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_5tasks_parallel.json to 1,2,3, or 4.

Paper

Please cite our paper:

Paknezhad, M., Rengarajan, H., Yuan, C., Suresh, S., Gupta, M., Ramasamy, S., Lee H. K., PaRT: Parallel Learning Towards Robust and Transparent AI, arXiv:2201.09534 (2022)

Owner
Mahsa
I develop DL, ML, computer vision, and image processing algorithms for problems in deep learning and medical domain.
Mahsa
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022