PaRT: Parallel Learning for Robust and Transparent AI

Related tags

Deep LearningPaRT
Overview

PaRT: Parallel Learning for Robust and Transparent AI

This repository contains the code for PaRT, an algorithm for training a base network on multiple tasks in parallel. The diagram of PaRT is shown in the figure below.

Below, we provide details regarding dependencies and the instructions for running the code for each experiment. We have prepared scripts for each experiment to help the user have a smooth experience.

Dependencies

  • python >= 3.8
  • pytorch >= 1.7
  • scikit-learn
  • torchvision
  • tensorboard
  • matplotlib
  • pillow
  • psutil
  • scipy
  • numpy
  • tqdm

SETUP ENVIRONMENT

To setup the conda env and create the required directories go to the scripts directory and run the following commands in the terminal:

conda init bash
bash -i setupEnv.sh

Check that the final output of these commands is:

Installed torch version {---}
Virtual environment was made successfully

CIFAR 100 EXPERIMENTS

Instructions to run the code for the CIFAR100 experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR100Baseline.sh ../../scripts/test_case0_cifar100_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar100_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR100Parallel.sh ../../scripts/test_case0_cifar100_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar100_parallel.json to 1,2,3, or 4.

CIFAR 10 AND CIFAR 100 EXPERIMENTS

Instructions to run the code for the CIFAR10 and CIFAR100 experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR10_100Baseline.sh ../../scripts/test_case0_cifar10_100_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar10_100_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR10_100Parallel.sh ../../scripts/test_case0_cifar10_100_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar10_100_parallel.json to 1,2,3, or 4.

FIVETASKS EXPERIMENTS

The dataset for this experiment can be downloaded from the link provided by the CPG GitHub Page or Here. Instructions to run the code for the FiveTasks experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i run5TasksBaseline.sh ../../scripts/test_case0_5tasks_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_5tasks_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i run5TasksParallel.sh ../../scripts/test_case0_5tasks_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_5tasks_parallel.json to 1,2,3, or 4.

Paper

Please cite our paper:

Paknezhad, M., Rengarajan, H., Yuan, C., Suresh, S., Gupta, M., Ramasamy, S., Lee H. K., PaRT: Parallel Learning Towards Robust and Transparent AI, arXiv:2201.09534 (2022)

Owner
Mahsa
I develop DL, ML, computer vision, and image processing algorithms for problems in deep learning and medical domain.
Mahsa
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022