This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

Overview

JigsawClustering

Jigsaw Clustering for Unsupervised Visual Representation Learning

Pengguang Chen, Shu Liu, Jiaya Jia

Introduction

This project provides an implementation for the CVPR 2021 paper "Jigsaw Clustering for Unsupervised Visual Representation Learning"

Installation

Environment

We verify our code on

  • 4x2080Ti GPUs
  • CUDA 10.1
  • python 3.7
  • torch 1.6.0
  • torchvision 0.7.0

Other similar envirouments should also work properly.

Install

We use the SyncBN from apex, please install apex refer to https://github.com/NVIDIA/apex (SyncBN from pytorch should also work properly, we will verify it later.)

We use detectron2 for the training of detection tasks. If you are willing to finetune our pretrained model on the detection task, please install detectron2 refer to https://github.com/facebookresearch/detectron2

git clone https://github.com/Jia-Research-Lab/JigsawClustering.git
cd JigsawClustering/
pip install diffdist

Dataset

Please put the data under ./datasets. The directory looks like:

datasets
│
│───ImageNet/
│   │───class1/
│   │───class2/
│   │   ...
│   └───class1000/
│   
│───coco/
│   │───annotations/
│   │───train2017/
│   └───val2017/
│
│───VOC2012/
│   
└───VOC2007/

Results and pretrained model

The pretrained model is available at here.

Task Dataset Results
Linear Evaluation ImageNet 66.4
Semi-Supervised 1% ImageNet 40.7
Semi-Supervised 10% ImageNet 63.0
Detection COCO 39.3

Training

Pre-training on ImageNet

python main.py --dist-url 'tcp://localhost:10107' --multiprocessing-distributed --world-size 1 --rank 0 \
    -a resnet50 \
    --lr 0.03 --batch-size 256 --epoch 200 \
    --save-dir outputs/jigclu_pretrain/ \
    --resume outputs/jigclu_pretrain/model_best.pth.tar \
    --loss-t 0.3 \
    --cross-ratio 0.3 \
    datasets/ImageNet/

Linear evaluation on ImageNet

python main_lincls.py --dist-url 'tcp://localhost:10007' --multiprocessing-distributed --world-size 1 --rank 0 \
    -a resnet50 \
    --lr 10.0 --batch-size 256 \
    --prefix module.encoder. \
    --pretrained outputs/jigclu_pretrain/model_best.pth.tar \
    --save-dir outputs/jigclu_linear/ \
    datasets/ImageNet/

Semi-Supervised finetune on ImageNet

10% label

python main_semi.py --dist-url 'tcp://localhost:10102' --multiprocessing-distributed --world-size 1 --rank 0 \
    -a resnet50 \
    --batch-size 256 \
    --wd 0.0 --lr 0.01 --lr-last-layer 0.2 \
    --syncbn \
    --prefix module.encoder. \
    --labels-perc 10 \
    --pretrained outputs/jigclu_pretrain/model_best.pth.tar \
    --save-dir outputs/jigclu_semi_10p/ \
    datasets/ImageNet/

1% label

python main_semi.py --dist-url 'tcp://localhost:10101' --multiprocessing-distributed --world-size 1 --rank 0 \
    -a resnet50 \
    --batch-size 256 \
    --wd 0.0 --lr 0.02 --lr-last-layer 5.0 \
    --syncbn \
    --prefix module.encoder. \
    --labels-perc 1 \
    --pretrained outputs/jigclu_pretrain/model_best.pth.tar \
    --save-dir outputs/jigclu_semi_1p/ \
    datasets/ImageNet/

Transfer to COCO detection

Please convert the pretrained weight first

python detection/convert.py

Then start training using

python detection/train_net.py --config-file detection/configs/R50-JigClu.yaml --num-gpus 4

VOC detection

python detection/train_net.py --config-file detection/configs/voc-R50-JigClu.yaml --num-gpus 4

Citation

Please consider citing JigsawClustering in your publications if it helps your research.

@inproceedings{chen2021jigclu,
    title={Jigsaw Clustering for Unsupervised Visual Representation Learning},
    author={Pengguang Chen, Shu Liu, and Jiaya Jia},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2021},
}
Comments
  • Some question about trainning

    Some question about trainning

    Hi~Thanks for your excellent work! I have a machine with 2 1080Ti,and I want to train your model on CIFAR10 with resnet18.

    I use the parmeters like this ,but it seems don't work. 1632405015(1)

    The program is stuck in this situation.

    1632405115(1)

    opened by zbw0329 10
  • Some details about the training

    Some details about the training

    Hi, I have recently read your paper and find it very interesting. There are still some confusions about the experiments.

    The experiments require 4 2080ti for training. Does it mean we must have 4 2080ti on one single machine? What if I have 4 2080ti on different machines? Is there any suggestion for this situation? BTW, how long does it take when you train on ImageNet1k?

    Much appreciation for your reply.

    Best wishes!

    opened by Hanzy1996 3
  • Some questions about the results of ImageNet100

    Some questions about the results of ImageNet100

    Thank you for your wonderful work, I want to do some more works based on your code. But I meet some questions about the results. I use the JigsawClustering and the dataset ImageNet100 to train the model. I only changed one line in the model to fit this dataset(I added model.fc = nn.Linear(2048, 100) in line 162 of main_lincls.py). However, despite using 4 GPUs, and did not change the configuration file. I only got an accuracy of 79.24. There is still a certain gap between this and the 80.9 reported in the paper. How can I achieve the accuracy reported in the paper now? Once again, thank you for your excellent work and code. I am looking forward to your reply.

    opened by WilyZhao8 1
  • Results of Faster-RCNN R50-FPN with model pretrained on ImageNet with standard cross-entropy loss

    Results of Faster-RCNN R50-FPN with model pretrained on ImageNet with standard cross-entropy loss

    Hi, thanks for your work! In Objection Detection, do you apply ResNet-50 model pretrained on ImageNet with standard cross-entropy loss to Faster-RCNN R50-FPN?

    opened by fzfs 1
  • Training the model on a single GPU

    Training the model on a single GPU

    Hi! I'm aware that the question has been asked previously, but could you guide how to modify jigclu to remove the distributeddataparallel depedency?

    Thanks!

    opened by shuvam-creditmate 2
  • It seems that the model has not learned anything,What should I do?

    It seems that the model has not learned anything,What should I do?

    Thanks for your excellent work! I change the dataloader to use JigClu in CIFAR-10,and train the model on it by 1000epoch. But the prediction of my model is all the same. It seem that model always cluster into the same cluster

    opened by zbw0329 10
Releases(1.0)
Owner
DV Lab
Deep Vision Lab
DV Lab
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022