This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

Overview

JigsawClustering

Jigsaw Clustering for Unsupervised Visual Representation Learning

Pengguang Chen, Shu Liu, Jiaya Jia

Introduction

This project provides an implementation for the CVPR 2021 paper "Jigsaw Clustering for Unsupervised Visual Representation Learning"

Installation

Environment

We verify our code on

  • 4x2080Ti GPUs
  • CUDA 10.1
  • python 3.7
  • torch 1.6.0
  • torchvision 0.7.0

Other similar envirouments should also work properly.

Install

We use the SyncBN from apex, please install apex refer to https://github.com/NVIDIA/apex (SyncBN from pytorch should also work properly, we will verify it later.)

We use detectron2 for the training of detection tasks. If you are willing to finetune our pretrained model on the detection task, please install detectron2 refer to https://github.com/facebookresearch/detectron2

git clone https://github.com/Jia-Research-Lab/JigsawClustering.git
cd JigsawClustering/
pip install diffdist

Dataset

Please put the data under ./datasets. The directory looks like:

datasets
│
│───ImageNet/
│   │───class1/
│   │───class2/
│   │   ...
│   └───class1000/
│   
│───coco/
│   │───annotations/
│   │───train2017/
│   └───val2017/
│
│───VOC2012/
│   
└───VOC2007/

Results and pretrained model

The pretrained model is available at here.

Task Dataset Results
Linear Evaluation ImageNet 66.4
Semi-Supervised 1% ImageNet 40.7
Semi-Supervised 10% ImageNet 63.0
Detection COCO 39.3

Training

Pre-training on ImageNet

python main.py --dist-url 'tcp://localhost:10107' --multiprocessing-distributed --world-size 1 --rank 0 \
    -a resnet50 \
    --lr 0.03 --batch-size 256 --epoch 200 \
    --save-dir outputs/jigclu_pretrain/ \
    --resume outputs/jigclu_pretrain/model_best.pth.tar \
    --loss-t 0.3 \
    --cross-ratio 0.3 \
    datasets/ImageNet/

Linear evaluation on ImageNet

python main_lincls.py --dist-url 'tcp://localhost:10007' --multiprocessing-distributed --world-size 1 --rank 0 \
    -a resnet50 \
    --lr 10.0 --batch-size 256 \
    --prefix module.encoder. \
    --pretrained outputs/jigclu_pretrain/model_best.pth.tar \
    --save-dir outputs/jigclu_linear/ \
    datasets/ImageNet/

Semi-Supervised finetune on ImageNet

10% label

python main_semi.py --dist-url 'tcp://localhost:10102' --multiprocessing-distributed --world-size 1 --rank 0 \
    -a resnet50 \
    --batch-size 256 \
    --wd 0.0 --lr 0.01 --lr-last-layer 0.2 \
    --syncbn \
    --prefix module.encoder. \
    --labels-perc 10 \
    --pretrained outputs/jigclu_pretrain/model_best.pth.tar \
    --save-dir outputs/jigclu_semi_10p/ \
    datasets/ImageNet/

1% label

python main_semi.py --dist-url 'tcp://localhost:10101' --multiprocessing-distributed --world-size 1 --rank 0 \
    -a resnet50 \
    --batch-size 256 \
    --wd 0.0 --lr 0.02 --lr-last-layer 5.0 \
    --syncbn \
    --prefix module.encoder. \
    --labels-perc 1 \
    --pretrained outputs/jigclu_pretrain/model_best.pth.tar \
    --save-dir outputs/jigclu_semi_1p/ \
    datasets/ImageNet/

Transfer to COCO detection

Please convert the pretrained weight first

python detection/convert.py

Then start training using

python detection/train_net.py --config-file detection/configs/R50-JigClu.yaml --num-gpus 4

VOC detection

python detection/train_net.py --config-file detection/configs/voc-R50-JigClu.yaml --num-gpus 4

Citation

Please consider citing JigsawClustering in your publications if it helps your research.

@inproceedings{chen2021jigclu,
    title={Jigsaw Clustering for Unsupervised Visual Representation Learning},
    author={Pengguang Chen, Shu Liu, and Jiaya Jia},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2021},
}
Comments
  • Some question about trainning

    Some question about trainning

    Hi~Thanks for your excellent work! I have a machine with 2 1080Ti,and I want to train your model on CIFAR10 with resnet18.

    I use the parmeters like this ,but it seems don't work. 1632405015(1)

    The program is stuck in this situation.

    1632405115(1)

    opened by zbw0329 10
  • Some details about the training

    Some details about the training

    Hi, I have recently read your paper and find it very interesting. There are still some confusions about the experiments.

    The experiments require 4 2080ti for training. Does it mean we must have 4 2080ti on one single machine? What if I have 4 2080ti on different machines? Is there any suggestion for this situation? BTW, how long does it take when you train on ImageNet1k?

    Much appreciation for your reply.

    Best wishes!

    opened by Hanzy1996 3
  • Some questions about the results of ImageNet100

    Some questions about the results of ImageNet100

    Thank you for your wonderful work, I want to do some more works based on your code. But I meet some questions about the results. I use the JigsawClustering and the dataset ImageNet100 to train the model. I only changed one line in the model to fit this dataset(I added model.fc = nn.Linear(2048, 100) in line 162 of main_lincls.py). However, despite using 4 GPUs, and did not change the configuration file. I only got an accuracy of 79.24. There is still a certain gap between this and the 80.9 reported in the paper. How can I achieve the accuracy reported in the paper now? Once again, thank you for your excellent work and code. I am looking forward to your reply.

    opened by WilyZhao8 1
  • Results of Faster-RCNN R50-FPN with model pretrained on ImageNet with standard cross-entropy loss

    Results of Faster-RCNN R50-FPN with model pretrained on ImageNet with standard cross-entropy loss

    Hi, thanks for your work! In Objection Detection, do you apply ResNet-50 model pretrained on ImageNet with standard cross-entropy loss to Faster-RCNN R50-FPN?

    opened by fzfs 1
  • Training the model on a single GPU

    Training the model on a single GPU

    Hi! I'm aware that the question has been asked previously, but could you guide how to modify jigclu to remove the distributeddataparallel depedency?

    Thanks!

    opened by shuvam-creditmate 2
  • It seems that the model has not learned anything,What should I do?

    It seems that the model has not learned anything,What should I do?

    Thanks for your excellent work! I change the dataloader to use JigClu in CIFAR-10,and train the model on it by 1000epoch. But the prediction of my model is all the same. It seem that model always cluster into the same cluster

    opened by zbw0329 10
Releases(1.0)
Owner
DV Lab
Deep Vision Lab
DV Lab
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022