Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Overview

Adversarial Reciprocal Points Learning for Open Set Recognition

Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition".

1. Requirements

Environments

Currently, requires following packages

  • python 3.6+
  • torch 1.4+
  • torchvision 0.5+
  • CUDA 10.1+
  • scikit-learn 0.22+

Datasets

For Tiny-ImageNet, please download the following datasets to ./data/tiny_imagenet.

2. Training & Evaluation

Open Set Recognition

To train open set recognition models in paper, run this command:

python osr.py --dataset <DATASET> --loss <LOSS>

Option --loss can be one of ARPLoss/RPLoss/GCPLoss/Softmax. --dataset is one of mnist/svhn/cifar10/cifar100/tiny_imagenet. To run ARPL+CS, add --cs after this command.

Out-of-Distribution Detection

To train out-of-distribution models in paper, run this command:

python ood.py --dataset <DATASET> --out-dataset <DATASET> --model <NETWORK> --loss <LOSS>

Option --out-dataset denotes the out-of-distribution dataset for evaluation. --loss can be one of ARPLoss/RPLoss/GCPLoss/Softmax. --dataset is one of mnist/cifar10. --out-dataset is one of kmnist/svhn/cifar100. To run ARPL+CS, add --cs after this command.

Evaluation

To evaluate the trained model for Open Set Classification Rate (OSCR) and Out-of-Distribution (OOD) detection setting, add --eval after the training command.

3. Results

We visualize the deep feature of Softmax/GCPL/ARPL/ARPL+CS as below.

Colored triangles represent the learned reciprocal points of different known classes.

4. PKU-AIR300

A new large-scale challenging aircraft dataset for open set recognition: Aircraft 300 (Air-300). It contains 320,000 annotated colour images from 300 different classes in total. Each category contains 100 images at least, and a maximum of 10,000 images, which leads to the long tail distribution.

Citation

  • If you find our work or the code useful, please consider cite our paper using:
@inproceedings{chen2021adversarial,
    title={Adversarial Reciprocal Points Learning for Open Set Recognition},
    author={Chen, Guangyao and Peng, Peixi and Wang, Xiangqian and Tian, Yonghong},
    journal={arXiv preprint arXiv:2103.00953},
    year={2021}
}
  • All publications using Air-300 Dataset should cite the paper below:
@InProceedings{chen_2020_ECCV,
    author = {Chen, Guangyao and Qiao, Limeng and Shi, Yemin and Peng, Peixi and Li, Jia and Huang, Tiejun and Pu, Shiliang and Tian, Yonghong},
    title = {Learning Open Set Network with Discriminative Reciprocal Points},
    booktitle = {The European Conference on Computer Vision (ECCV)},
    month = {August},
    year = {2020}
}
Owner
Guangyao Chen
Ph.D student @ PKU
Guangyao Chen
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021