Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Overview

Adversarial Reciprocal Points Learning for Open Set Recognition

Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition".

1. Requirements

Environments

Currently, requires following packages

  • python 3.6+
  • torch 1.4+
  • torchvision 0.5+
  • CUDA 10.1+
  • scikit-learn 0.22+

Datasets

For Tiny-ImageNet, please download the following datasets to ./data/tiny_imagenet.

2. Training & Evaluation

Open Set Recognition

To train open set recognition models in paper, run this command:

python osr.py --dataset <DATASET> --loss <LOSS>

Option --loss can be one of ARPLoss/RPLoss/GCPLoss/Softmax. --dataset is one of mnist/svhn/cifar10/cifar100/tiny_imagenet. To run ARPL+CS, add --cs after this command.

Out-of-Distribution Detection

To train out-of-distribution models in paper, run this command:

python ood.py --dataset <DATASET> --out-dataset <DATASET> --model <NETWORK> --loss <LOSS>

Option --out-dataset denotes the out-of-distribution dataset for evaluation. --loss can be one of ARPLoss/RPLoss/GCPLoss/Softmax. --dataset is one of mnist/cifar10. --out-dataset is one of kmnist/svhn/cifar100. To run ARPL+CS, add --cs after this command.

Evaluation

To evaluate the trained model for Open Set Classification Rate (OSCR) and Out-of-Distribution (OOD) detection setting, add --eval after the training command.

3. Results

We visualize the deep feature of Softmax/GCPL/ARPL/ARPL+CS as below.

Colored triangles represent the learned reciprocal points of different known classes.

4. PKU-AIR300

A new large-scale challenging aircraft dataset for open set recognition: Aircraft 300 (Air-300). It contains 320,000 annotated colour images from 300 different classes in total. Each category contains 100 images at least, and a maximum of 10,000 images, which leads to the long tail distribution.

Citation

  • If you find our work or the code useful, please consider cite our paper using:
@inproceedings{chen2021adversarial,
    title={Adversarial Reciprocal Points Learning for Open Set Recognition},
    author={Chen, Guangyao and Peng, Peixi and Wang, Xiangqian and Tian, Yonghong},
    journal={arXiv preprint arXiv:2103.00953},
    year={2021}
}
  • All publications using Air-300 Dataset should cite the paper below:
@InProceedings{chen_2020_ECCV,
    author = {Chen, Guangyao and Qiao, Limeng and Shi, Yemin and Peng, Peixi and Li, Jia and Huang, Tiejun and Pu, Shiliang and Tian, Yonghong},
    title = {Learning Open Set Network with Discriminative Reciprocal Points},
    booktitle = {The European Conference on Computer Vision (ECCV)},
    month = {August},
    year = {2020}
}
Owner
Guangyao Chen
Ph.D student @ PKU
Guangyao Chen
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022