Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Overview

Pop-Out Motion

Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Kyun (T-K) Kim (*: equal contributions)

[Project Page] [Paper] [Video]

animated

We present a framework that can deform an object in a 2D image as it exists in 3D space. While our method leverages 2D-to-3D reconstruction, we argue that reconstruction is not sufficient for realistic deformations due to the vulnerability to topological errors. Thus, we propose to take a supervised learning-based approach to predict the shape Laplacian of the underlying volume of a 3D reconstruction represented as a point cloud. Given the deformation energy calculated using the predicted shape Laplacian and user-defined deformation handles (e.g., keypoints), we obtain bounded biharmonic weights to model plausible handle-based image deformation.

 

Environment Setup

Clone this repository and install the dependencies specified in requirements.txt.

 git clone https://github.com/jyunlee/Pop-Out-Motion.git
 mv Pop-Out-Motion
 pip install -r requirements.txt 

 

Data Pre-Processing

Training Data

  1. Build executables from the c++ files in data_preprocessing directory. After running the commands below, you should have normalize_bin and calc_l_minv_bin executables.
 cd data_preprocessing
 mkdir build
 cd build
 cmake ..
 make
 cd ..
  1. Clone and build Manifold repository to obtain manifold executable.

  2. Clone and build fTetWild repository to obtain FloatTetwild_bin executable.

  3. Run preprocess_train_data.py to prepare your training data. This should perform (1) shape normalization into a unit bounding sphere, (2) volume mesh conversion, and (3) cotangent Laplacian and inverse mass calculation.

 python preprocess_train_data.py 

Test Data

  1. Build executables from the c++ files in data_preprocessing directory. After running the commands below, you should have normalize_bin executable.
 cd data_preprocessing
 mkdir build
 cd build
 cmake ..
 make
 cd ..
  1. Run preprocess_test_data.py to prepare your test data. This should perform (1) shape normalization into a unit bounding sphere and (2) pre-computation of KNN-Based Point Pair Sampling (KPS).
 python preprocess_test_data.py 

 

Network Training

Run network/train.py to train your own Laplacian Learning Network.

 cd network
 python train.py 

The pre-trained model on DFAUST dataset is also available here.

 

Network Inference

Deformation Energy Inference

  1. Given an input image, generate its 3D reconstruction via running PIFu. It is also possible to directly use point cloud data obtained from other sources.

  2. Pre-process the data obtained from Step 1 -- please refer to this section.

  3. Run network/a_inference.py to predict the deformation energy matrix.

 cd network
 python a_inference.py 

Handle-Based Deformation Weight Calculation

  1. Build an executable from the c++ file in bbw_calculation directory. After running the commands below, you should have calc_bbw_bin executable.
 cd bbw_calculation
 mkdir build
 cd build
 cmake ..
 make
 cd ..
  1. (Optional) Run sample_pt_handles.py to obtain deformation control handles sampled by farthest point sampling.

  2. Run calc_bbw_bin to calculate handle-based deformation weights using the predicted deformation energy.

./build/calc_bbw_bin <shape_path> <handle_path> <deformation_energy_path> <output_weight_path>

 

Citation

If you find this work useful, please consider citing our paper.

@InProceedings{lee2022popoutmotion,
    author = {Lee, Jihyun and Sung, Minhyuk and Kim, Hyunjin and Kim, Tae-Kyun},
    title = {Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2022}
}

 

Acknowledgements

Owner
Jihyun Lee
Jihyun Lee
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023