A self-supervised 3D representation learning framework named viewpoint bottleneck.

Overview

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck

Paper

Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI Industry Research (AIR), Tsinghua University, China.


result2

result3

result4

result5

result6

Introduction

Semantic understanding of 3D point clouds is important for various robotics applications. Given that point-wise semantic annotation is expensive, in our paper, we address the challenge of learning models with extremely sparse labels. The core problem is how to leverage numerous unlabeled points.

In this repository, we propose a self-supervised 3D representation learning framework named viewpoint bottleneck. It optimizes a mutual-information based objective, which is applied on point clouds under different viewpoints. A principled analysis shows that viewpoint bottleneck leads to an elegant surrogate loss function that is suitable for large-scale point cloud data. Compared with former arts based upon contrastive learning, viewpoint bottleneck operates on the feature dimension instead of the sample dimension. This paradigm shift has several advantages: It is easy to implement and tune, does not need negative samples and performs better on our goal down-streaming task. We evaluate our method on the public benchmark ScanNet, under the pointly-supervised setting. We achieve the best quantitative results among comparable solutions. Meanwhile we provide an extensive qualitative inspection on various challenging scenes. They demonstrate that our models can produce fairly good scene parsing results for robotics applications.

Citation

If you find our work useful in your research, please consider citing:

@misc{

} 

Preparation

Requirements

  • Python 3.6 or higher
  • CUDA 11.1

It is strongly recommended to proceed in a virtual environment (venv, conda)

Installation

Clone the repository and install the rest of the requirements

git clone https://github.com/OPEN-AIR-SUN/ViewpointBottleneck/
cd ViewpointBottlencek

# Uncomment following commands to create & activate a conda env
# conda create -n env_name python==3.8
# conda activate env_name

pip install -r requirements.txt

Data Preprocess

  1. Download ScanNetV2 dataset and data-efficient setting HERE .

  2. Extract point clouds and annotations by running

# From root of the repo
# Fully-supervised:
python data_preprocess/scannet.py

# Pointly supervised:
python data_preprocess/scannet_eff.py

Pretrain the model

# From root of the repo
cd pretrain/
chmod +x ./run.sh
./run.sh

You can modify some details with environment variables:

SHOTS=50 FEATURE_DIM=512 \
LOG_DIR=logs \
PRETRAIN_PATH=actual/path/to/pretrain.pth \
DATASET_PATH=actual/directory/of/dataset \
./run.sh

Fine-tune the model with pretrained checkpoint

# From root of the repo
cd finetune/
chmod +x ./run.sh
./run.sh

You can modify some details with environment variables:

SHOTS=50 \
LOG_DIR=logs \
PRETRAIN_PATH=actual/path/to/pretrain.pth \
DATASET_PATH=actual/directory/of/dataset \
./run.sh

Model Zoo

Pretrained Checkpoints Feature Dimension 256 512 1024
Final checkpoints
mIOU(%) on val split
Supervised points
20 56.2 57.0 56.3
50 63.3 63.6 63.7
100 66.5 66.8 66.5
200 68.4 68.5 68.4

Acknowledgements

We appreciate the work of ScanNet and SpatioTemporalSegmentation.

We are grateful to Anker Innovations for supporting this project.

BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022