For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

Overview

LongScientificFormer

For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

Some codes are borrowed from ONMT(https://github.com/OpenNMT/OpenNMT-py)

Data Preparation

Option 1: download the processed data

Pre-processed data

Put all files into raw_data directory

Step 2. Download Stanford CoreNLP

We will need Stanford CoreNLP to tokenize the data. Download it here and unzip it. Then add the following command to your bash_profile:

export CLASSPATH=/path/to/stanford-corenlp-4.2.2/stanford-corenlp-4.2.2.jar

replacing /path/to/ with the path to where you saved the stanford-corenlp-4.2.2 directory.

step 3. extracting sections from GROBID XML files

python preprocess.py -mode extract_pdf_sections -log_file ../logs/extract_section.log

step 4. extracting text from TIKA XML files

python preprocess.py -mode get_text_clean_tika -log_file ../logs/extract_tika_text.log

step 5. Tokenize texts from papers and slides using stanfordCoreNLP

python preprocess.py -mode tokenize  -save_path ../temp -log_file ../logs/tokenize_by_corenlp.log

Step 6. Extract source, section, and target from tokenized files

python preprocess.py -mode clean_paper_jsons -save_path ../json_data/  -n_cpus 10 -log_file ../logs/build_json.log

Step 7. Generate BERT .pt files from source, sections and targets

python preprocess.py -mode format_to_bert -raw_path ../json_data/ -save_path ../bert_data  -lower -n_cpus 40 -log_file ../logs/build_bert_files.log

Model Training

First run: For the first time, you should use single-GPU, so the code can download the BERT model. Use -visible_gpus -1, after downloading, you could kill the process and rerun the code with multi-GPUs.

Train

python train.py  -ext_dropout 0.1 -lr 2e-3  -visible_gpus 1,2,3 -report_every 200 -save_checkpoint_steps 1000 -batch_size 1 -train_steps 100000 -accum_count 2  -log_file ../logs/ext_bert -use_interval true -warmup_steps 10000

To continue training from a checkpoint

python train.py  -ext_dropout 0.1 -lr 2e-3  -train_from ../models/model_step_99000.pt -visible_gpus 1,2,3 -report_every 200 -save_checkpoint_steps 1000 -batch_size 1 -train_steps 100000 -accum_count 2  -log_file ../logs/ext_bert -use_interval true -warmup_steps 10000

Test

python train.py -mode test  -test_batch_size 1 -bert_data_path ../bert_data -log_file ../logs/ext_bert_test -test_from ../models/model_step_99000.pt -model_path ../models -sep_optim true -use_interval true -visible_gpus 1,2,3 -alpha 0.95 -result_path ../results/ext 
Owner
Athar Sefid
Athar Sefid
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022