Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Overview

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations

Official repository for paper "Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations".

This public repository is a work in progress! Results here bear no resemblance to results in the paper!

We predict the intelligibility of binaural speech signals by first extracting latent representations from raw audio. Then, a lightweight predictor over these latent representations can be trained. This results in improved performance over predicting on spectral features of the audio, despite the feature extractor not being explicitly trained for this task. In certain cases, a single layer is sufficient for strong correlations between the predictions and the ground-truth scores.

This repository contains:

  • vqcpc/ - Module for VQCPC model in PyTorch
  • stoi/ - Module for Small and SeqPool predictor model in PyTorch
  • data.py - File containing various PyTorch custom datasets
  • main-vqcpc.py - Script for VQCPC training
  • create-latents.py - Script for generating latent dataset from trained VQCPC
  • plot-latents.py - Script for visualizing extracted latent representations
  • main-stoi.py - Script for STOI predictor training
  • main-test.py - Script for evaluating models
  • compute-correlations.py - Script for computing metrics for many models
  • checkpoints/ - trained checkpoints of VQCPC and STOI predictor models
  • config/ - Directory containing various configuration files for experiments
  • results/ - Directory containing official results from experiments
  • dataset/ - Directory containing metadata files for the dataset
  • data-generator/ - Directory containing dataset generation scripts (MATLAB)

All models are implemented in PyTorch. The training scripts are implemented using ptpt - a lightweight framework around PyTorch.

Visualisation of binaural waveform, predicted per-frame STOI, and latent representation: Visualisation of binaural waveform, predicted per-frame STOI, and latent representation.

Usage

VQ-CPC Training

Begin VQ-CPC training using the configuration defined in config.toml:

python main-vqcpc.py --cfg-path config-path.toml

Other useful arguments:

--resume            # resume from specified checkpoint
--no-save           # do not save training progress (useful for debugging)
--no-cuda           # do not try to access CUDA device (very slow)
--no-amp            # disable automatic mixed precision (if you encounter NaN)
--nb-workers        # number of workers for for data loading (default: 8)
--detect-anomaly    # detect autograd anomalies and terminate if encountered
--seed              # random seed (default: 12345)

Latent Dataset Generation

Begin latent dataset generation using pre-trained VQCPC model-checkpoint.pt from dataset wav-dataset and output to latent-dataset using configuration defined in config.toml:

python create-latents.py model-checkpoint.pt wav-dataset latent-dataset --cfg-path config.toml

As above, but distributed across n processes with script rank r:

python create-latents.py model-checkpoint.pt wav-dataset latent-dataset --cfg-path config.toml --array-size n --array-rank r

Other useful arguments:

--no-cuda           # do not try to access CUDA device (very slow)
--no-amp            # disable automatic mixed precision (if you encounter NaN)
--no-tqdm           # disable progress bars
--detect-anomaly    # detect autograd anomalies and terminate if encountered
-n                  # alias for `--array-size`
-r                  # alias for `--array-rank`

Latent Plotting

Begin interactive VQCPC latent visualisation script using pre-trained model model-checkpoint.pt on dataset wav-dataset using configuration defined in config.toml:

python plot-latents.py model-checkpoint.pt wav-dataset --cfg-path config.toml

If you additionally have a pre-trained, per-frame STOI score predictor (not SeqPool predictor) you can specify the checkpoint stoi-checkpoint.pt and additional configuration stoi-config.toml, you can plot per-frame scores alongside the waveform and latent features:

python plot-latents.py model-checkpoint.pt wav-dataset --cfg-path config.toml --stoi stoi-checkpoint.pt --stoi-cfg stoi-config.toml

Other useful arguments:

--no-cuda           # do not try to access CUDA device (very slow)
--no-amp            # disable automatic mixed precision (if you encounter NaN)
--cmap              # define matplotlib colourmap
--style             # define matplotlib style

STOI Predictor Training

Begin intelligibility score predictor training script using configuration in config.toml:

python main-stoi.py --cfg-path config.toml

Other useful arguments:

--resume            # resume from specified checkpoint
--no-save           # do not save training progress (useful for debugging)
--no-cuda           # do not try to access CUDA device (very slow)
--no-amp            # disable automatic mixed precision (if you encounter NaN)
--nb-workers        # number of workers for for data loading (default: 8)
--detect-anomaly    # detect autograd anomalies and terminate if encountered
--seed              # random seed (default: 12345)

Predictor Evaluation

Begin evaluation of a pre-trained STOI score predictor using checkpoint stoi-checkpoint.pt on dataset dataset-root using configuration in stoi-config.toml:

python main-test.py stoi-checkpoint.pt dataset-root --cfg-path stoi-config.toml

Other useful arguments:

--no-save           # do not save training progress (useful for debugging)
--no-cuda           # do not try to access CUDA device (very slow)
--no-amp            # disable automatic mixed precision (if you encounter NaN)
--no-tqdm           # disable progress bars
--nb-workers        # number of workers for for data loading (default: 8)
--detect-anomaly    # detect autograd anomalies and terminate if encountered
--batch-size        # control dataloader batch size
--seed              # random seed (default: 12345)

Overall Evaluation

Compare results from many results files produced by main-test.py based on dataset ground truth:

python compute-correlations.py ground-truth.csv pred-1.csv ... pred-n.csv --names pred-1 ... pred-n

Configuration

Examples configurations for all experiments can be found here

We use toml files to define configurations. Each one consists of three sections:

  • [trainer]: configuration options for ptpt.TrainerConfig.
  • [data]: configuration options for the dataset.
  • [vqcpc] or [stoi]: configuration options for the VQCPC and predictor models respectively.

Checkpoints

Pretrained checkpoints for all models can be found here

Citation

TODO: add citation once paper published / arXiv-ed :)

Owner
Alex McKinney
Final-year student at Durham University. Interested in generative models and unsupervised representation learning.
Alex McKinney
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022