The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

Overview

Coronary Artery Tracking via 3D CNN Classification Pytorch

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

Link to paper here.

Key idea

A 3D dilated CNN is trained to predict the most likely direction and radius of an artery at any given point in a CCTA image based on a local image patch. We use a 3D Fibonacci ball to model a CNN Tracker, where the radius of the ball represents the radius of the vessel at the current position, and the points on the ball represent a possible direction of movement.

Starting from a single seed point placed manually or automatically anywhere in a coronary artery, a tracker follows the vessel centerline in two directions using the predictions of the CNN.

Tracking is terminated when no direction can be identified with high certainty.

In order to create a vessel tree automatically, we need to train three neural networks.

  • Firstly, we need to train a centerline net to predict the two directions(d0, d1) of the current position that can be moved and the vessel radius.
  • Secondly, we need to train a neural network to find two entrance points of a coronary artery.
  • The third network is responsible for placing seed points in the image

Architecture of Centerline Net

Layer 1 2 3 4 5 6 7
Kernel width 3 3 3 3 3 1 1
Dilation 1 1 2 4 1 1 1
Channels 32 32 32 32 64 64 D+1
Field width 3 5 9 17 19 19 19

The number of output channels is equal to the number of potential directions in D, plus one channel for radius estimation.

The architecture of seedspint_net and ostiapoint_net are very similar to centerline_net. The only difference is in the output layer: instead of combining classification and regression, the final layer only performs regression.

Installation

To install all the required dependencies:

$ pip install -r requirement.txt

Training

1. Preparing CTA08 dataset

Tip:
CAT08 datasets need to be registered and certified in this website before it can be downloaded. It should be noted that your registration email may not be received by the server of the above website. If you have this problem, download this form, compile it and contact Dr.Theo van Walsum ([email protected]).

  1. Unzip training.tar.gz to:
    Coronary-Artery-Tracking-via-3D-CNN-Classification/
            -data_process_tools/
                -train_data/
                    -dataset00/
                    -dataset01/
                    -dataset02/
                    -dataset03/
                    -dataset04/
                    -dataset05/
                    -dataset06/
                    -dataset07/
  1. Create spacing_info.csv and nii.gz data
python3 creat_spacinginfo_data_tool.py
  1. Create centerline patch data
  • Create no offset samples
python3 centerline_patch_generater_no_offset.py
  • Create samples with offset
python3 centerline_patch_generater_offset.py
  1. Create seeds patch data
  • Create positve samples
python3 seedpoints_patch_generater_postive.py     
  • Create negative sample
python3 seedpoints_patch_generater_negative.py

those scripts will automaticlly create folders

-data_process_tools/
    -patch_data/
         -centerline_patch/
            -no_offset/
                 -point_500_gp_1/
                     -d0/
                     d0_patch_info_500.csv 
                     .
                     .
                     .
                     -d7/
                     d7_patch_info_500.csv
            -offset/
                  -point_500_gp_1/
                     -d0/
                     d0_patch_info_500.csv
                     .
                     .
                     .
                     -d7/
                     d7_patch_info_500.csv
  1. Create osita patch data
  • Create positve samples
python3 ostiapoints_patch_generater_positive.py
  • Create negative sample
python3 ostiapoints_patch_generater_negative.py

It should be noted that 8 samples corresponding to the data will be produced here, and the specific training set and test set division also need to write your own code to divide the data set and generate the train CSV file and val CSV file

2.Training Models

  1. Training centerline net
cd centerline_train_tools/
CUDA_VISIBLE_DEVICES=0 python3 centerline_train_tools.py
  1. Training seedpoints net
cd seedspoints_train_tools/
CUDA_VISIBLE_DEVICES=0 python3 seeds_train_tools.py
  1. Training ostiapoints net
cd ostiapoints_train_tools
CUDA_VISIBLE_DEVICES=0 python3 ostia_train_tools.py 

3.Create coronary artery vessels tree

cd infer_tools_tree/

First, you need to modify settingy.yaml replacing the path inside to the path of the file you saved

python3 vessels_tree_infer.py

The predicted vessel tree is shown in the figure below

The vessels from different seed points are spliced by breadth-first search, and then a complete single vessel is generated by depth-first search

Seedpoints net will generate 200 seed points as shown in the figure below. It can be seen that the seed points are distributed near several coronary arteries

References

@article{wolterink2019coronary,
  title={Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier},
  author={Wolterink, Jelmer M and van Hamersvelt, Robbert W and Viergever, Max A and Leiner, Tim Leiner, Ivana},
  journal={Medical image analysis},
  volume={51},
  pages={46--60},
  year={2019},
  publisher={Elsevier}
}
Owner
James
I am an investigator in the SenseTime. My research interests are in 3D Vision and Multiple Object Tracking.
James
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022