The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

Overview

Coronary Artery Tracking via 3D CNN Classification Pytorch

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

Link to paper here.

Key idea

A 3D dilated CNN is trained to predict the most likely direction and radius of an artery at any given point in a CCTA image based on a local image patch. We use a 3D Fibonacci ball to model a CNN Tracker, where the radius of the ball represents the radius of the vessel at the current position, and the points on the ball represent a possible direction of movement.

Starting from a single seed point placed manually or automatically anywhere in a coronary artery, a tracker follows the vessel centerline in two directions using the predictions of the CNN.

Tracking is terminated when no direction can be identified with high certainty.

In order to create a vessel tree automatically, we need to train three neural networks.

  • Firstly, we need to train a centerline net to predict the two directions(d0, d1) of the current position that can be moved and the vessel radius.
  • Secondly, we need to train a neural network to find two entrance points of a coronary artery.
  • The third network is responsible for placing seed points in the image

Architecture of Centerline Net

Layer 1 2 3 4 5 6 7
Kernel width 3 3 3 3 3 1 1
Dilation 1 1 2 4 1 1 1
Channels 32 32 32 32 64 64 D+1
Field width 3 5 9 17 19 19 19

The number of output channels is equal to the number of potential directions in D, plus one channel for radius estimation.

The architecture of seedspint_net and ostiapoint_net are very similar to centerline_net. The only difference is in the output layer: instead of combining classification and regression, the final layer only performs regression.

Installation

To install all the required dependencies:

$ pip install -r requirement.txt

Training

1. Preparing CTA08 dataset

Tip:
CAT08 datasets need to be registered and certified in this website before it can be downloaded. It should be noted that your registration email may not be received by the server of the above website. If you have this problem, download this form, compile it and contact Dr.Theo van Walsum ([email protected]).

  1. Unzip training.tar.gz to:
    Coronary-Artery-Tracking-via-3D-CNN-Classification/
            -data_process_tools/
                -train_data/
                    -dataset00/
                    -dataset01/
                    -dataset02/
                    -dataset03/
                    -dataset04/
                    -dataset05/
                    -dataset06/
                    -dataset07/
  1. Create spacing_info.csv and nii.gz data
python3 creat_spacinginfo_data_tool.py
  1. Create centerline patch data
  • Create no offset samples
python3 centerline_patch_generater_no_offset.py
  • Create samples with offset
python3 centerline_patch_generater_offset.py
  1. Create seeds patch data
  • Create positve samples
python3 seedpoints_patch_generater_postive.py     
  • Create negative sample
python3 seedpoints_patch_generater_negative.py

those scripts will automaticlly create folders

-data_process_tools/
    -patch_data/
         -centerline_patch/
            -no_offset/
                 -point_500_gp_1/
                     -d0/
                     d0_patch_info_500.csv 
                     .
                     .
                     .
                     -d7/
                     d7_patch_info_500.csv
            -offset/
                  -point_500_gp_1/
                     -d0/
                     d0_patch_info_500.csv
                     .
                     .
                     .
                     -d7/
                     d7_patch_info_500.csv
  1. Create osita patch data
  • Create positve samples
python3 ostiapoints_patch_generater_positive.py
  • Create negative sample
python3 ostiapoints_patch_generater_negative.py

It should be noted that 8 samples corresponding to the data will be produced here, and the specific training set and test set division also need to write your own code to divide the data set and generate the train CSV file and val CSV file

2.Training Models

  1. Training centerline net
cd centerline_train_tools/
CUDA_VISIBLE_DEVICES=0 python3 centerline_train_tools.py
  1. Training seedpoints net
cd seedspoints_train_tools/
CUDA_VISIBLE_DEVICES=0 python3 seeds_train_tools.py
  1. Training ostiapoints net
cd ostiapoints_train_tools
CUDA_VISIBLE_DEVICES=0 python3 ostia_train_tools.py 

3.Create coronary artery vessels tree

cd infer_tools_tree/

First, you need to modify settingy.yaml replacing the path inside to the path of the file you saved

python3 vessels_tree_infer.py

The predicted vessel tree is shown in the figure below

The vessels from different seed points are spliced by breadth-first search, and then a complete single vessel is generated by depth-first search

Seedpoints net will generate 200 seed points as shown in the figure below. It can be seen that the seed points are distributed near several coronary arteries

References

@article{wolterink2019coronary,
  title={Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier},
  author={Wolterink, Jelmer M and van Hamersvelt, Robbert W and Viergever, Max A and Leiner, Tim Leiner, Ivana},
  journal={Medical image analysis},
  volume={51},
  pages={46--60},
  year={2019},
  publisher={Elsevier}
}
Owner
James
I am an investigator in the SenseTime. My research interests are in 3D Vision and Multiple Object Tracking.
James
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Ian Covert 130 Jan 01, 2023
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022