《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Related tags

Deep LearningRUC
Overview

Improving Unsupervised Image Clustering With Robust Learning

This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust Learning (RUC)"

Improving Unsupervised Image Clustering With Robust Learning

Sungwon Park, Sungwon Han, Sundong Kim, Danu Kim, Sungkyu Park, Seunghoon Hong, Meeyoung Cha.

Highlight

  1. RUC is an add-on module to enhance the performance of any off-the-shelf unsupervised learning algorithms. RUC is inspired by robust learning. It first divides clustered data points into clean and noisy set, then refine the clustering results. With RUC, state-of-the-art unsupervised clustering methods; SCAN and TSUC showed showed huge performance improvements. (STL-10 : 86.7%, CIFAR-10 : 90.3%, CIFAR-20 : 54.3%)

  1. Prediction results of existing unsupervised learning algorithms were overconfident. RUC can make the prediction of existing algorithms softer with better calibration.

  1. Robust to adversarially crafted samples. ERM-based unsupervised clustering algorithms can be prone to adversarial attack. Adding RUC to the clustering models improves robustness against adversarial noise.

  1. Robust to adversarially crafted samples. ERM-based unsupervised clustering algorithms can be prone to adversarial attack. Adding RUC to the clustering models improves robustness against adversarial noise.

Required packages

  • python == 3.6.10
  • pytorch == 1.1.0
  • scikit-learn == 0.21.2
  • scipy == 1.3.0
  • numpy == 1.18.5
  • pillow == 7.1.2

Overall model architecture

Usage

usage: main_ruc_[dataset].py [-h] [--lr LR] [--momentum M] [--weight_decay W]
                         [--epochs EPOCHS] [--batch_size B] [--s_thr S_THR]
                         [--n_num N_NUM] [--o_model O_MODEL]
                         [--e_model E_MODEL] [--seed SEED]

config for RUC

optional arguments:
  -h, --help            show this help message and exit
  --lr LR               initial learning rate
  --momentum M          momentum
  --weight_decay        weight decay
  --epochs EPOCHS       max epoch per round. (default: 200)
  --batch_size B        training batch size
  --s_thr S_THR         confidence sampling threshold
  --n_num N_NUM         the number of neighbor for metric sampling
  --o_model O_MODEL     original model path
  --e_model E_MODEL     embedding model path
  --seed SEED           random seed

Model ZOO

Currently, we support the pretrained model for our model. We used the pretrained SCAN and SimCLR model from SCAN github.

Dataset Download link
CIFAR-10 Download
CIFAR-20 Download
STL-10 Download

Citation

If you find this repo useful for your research, please consider citing our paper:

@article{park2020improving,
  title={Improving Unsupervised Image Clustering With Robust Learning},
  author={Park, Sungwon and Han, Sungwon and Kim, Sundong and Kim, Danu and Park, Sungkyu and Hong, Seunghoon and Cha, Meeyoung},
  journal={arXiv preprint arXiv:2012.11150},
  year={2020}
}
Owner
Sungwon Park
Master Student in KAIST, School of Computing
Sungwon Park
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022