Automatic 2D-to-3D Video Conversion with CNNs

Related tags

Deep Learningdeep3d
Overview

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs

How To Run

To run this code. Please install MXNet following the official document. Deep3D requires MXNet to be built with Cuda 7.0 and Cudnn 4 or above. Please open mxnet/config.mk and set USE_CUDA and USE_CUDNN to 1. Then, append EXTRA_OPERATORS=path/to/deep3d/operators to path/to/mxnet/config.mk and recompile MXNet.

alt text

Motivation

Since the debut of Avatar in 2008, 3D movies has rapidly developed into mainstream technology. Roughly 10 to 20 3D movies are produced each year and the launch of Oculus Rift and other VR head set is only going to drive up the demand.

Producing 3D movies, however, is still hard. There are two ways of doing this and in practice they are about equally popular: shooting with a special 3D camera or shooting in 2D and manually convert to 3D. But 3D cameras are expensive and unwieldy while manual conversion involves an army of "depth artists" who sit there and draw depth maps for each frame.

Wouldn't it be cool if 2D-to-3D conversion can be done automatically, if you can take a 3D selfie with an ordinary phone?

Teaser

In case you are already getting sleepy, here are some cool 3D images converted from 2D ones by Deep3D. Normally you need 3D glasses or VR display to watch 3D images, but since most readers won't have these we show the 3D images as GIFs.

alt text alt text alt text alt text alt text alt text alt text alt text

Method

3D imagery has two views, one for the left eye and the other for the right. To convert an 2D image to 3D, you need to first estimate the distance from camera for each pixel (a.k.a depth map) and then wrap the image based on its depth map to create two views.

The difficult step is estimating the depth map. For automatic conversion, we would like to learn a model for it. There are several works on depth estimation from single 2D image with DNNs. However, they need to be trained on image-depth pairs which are hard to collect. As a result they can only use small datasets with a few hundred examples like NYU Depth and KITTI. Moreover, these datasets only has static scenes and it's hard to imagine they will generalize to photos with people in them.

In Contrast, Deep3D can be trained directly on 3D movies that have tens of millions frames in total. We do this by making the depth map an internal representation instead of the end prediction. Thus, instead of predicting an depth map and then use it to recreate the missing view with a separate algorithm, we train depth estimation and recreate end-to-end in the same neural network.

Here are some visualizations of our internal depth representation to help you understand how it works:

alt text alt text alt text alt text alt text alt text alt text alt text alt text

Following each image, there are 4-by-3 maps of depth layers, ordered from near to far. You can see that objects that are near to you appear in the first depth maps and objects that are far away appear in the last ones. This shows that the internal depth representation is learning to infer depth from 2D images without been directly trained on it.

Code

This work is done with MXNet, a flexible and efficient deep learning package. The trained model and a prediction script is in deep3d.ipynb. We will release the code for training shortly.

Owner
Eric Junyuan Xie
Software Engineer @ Bytedance
Eric Junyuan Xie
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022