Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

Related tags

Deep LearningJOKR
Overview

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting

Pytorch implementation for the paper "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting".

Project Webpage | Arxiv

Abstract:

The task of unsupervised motion retargeting in videos has seen substantial advancements through the use of deep neural networks. While early works concentrated on specific object priors such as a human face or body, recent work considered the unsupervised case. When the source and target videos, however, are of different shapes, current methods fail. To alleviate this problem, we introduce JOKR - a JOint Keypoint Representation that captures the motion common to both the source and target videos, without requiring any object prior or data collection. By employing a domain confusion term, we enforce the unsupervised keypoint representations of both videos to be indistinguishable. This encourages disentanglement between the parts of the motion that are common to the two domains, and their distinctive appearance and motion, enabling the generation of videos that capture the motion of the one while depicting the style of the other. To enable cases where the objects are of different proportions or orientations, we apply a learned affine transformation between the JOKRs. This augments the representation to be affine invariant, and in practice broadens the variety of possible retargeting pairs. This geometry-driven representation enables further intuitive control, such as temporal coherence and manual editing. Through comprehensive experimentation, we demonstrate the applicability of our method to different challenging cross-domain video pairs. We evaluate our method both qualitatively and quantitatively, and demonstrate that our method handles various cross-domain scenarios, such as different animals, different flowers, and humans. We also demonstrate superior temporal coherency and visual quality compared to state-of-the-art alternatives, through statistical metrics and a user study.

Code:

Prerequisites:

Python 3.6

pip install -r requirements.txt

Train:

First step training:

CUDA_VISIBLE_DEVICES=0 python train_first_stage.py --root_a ./data/cat/train_seg/ --root_b ./data/fox/train_seg/ --resize --out ./first_cat_fox/ --bs 8 --num_kp 14 --lambda_disc 1.0 --delta 0.12 --lambda_l2 50.0 --lambda_pred 1.0 --lambda_sep 4.0 --lambda_sill 0.5 --affine

Second step training:

CUDA_VISIBLE_DEVICES=0 python train_second_stage.py --root_a data/cat/train_seg/ --root_b data/fox/train_seg/ --resize --no_hflip --out ../second_cat_fox/ --load ../first_cat_fox/checkpoint_45000 --bs 6 --num_kp 14 --lambda_vgg 1.0

If droplet artifact occur, please reduce the perceptual loss:

--lambda_vgg 0.5

Pytorch Dataloader might create too many threads - deacreasing CPU performance. This can be solved using:

MKL_NUM_THREADS=8

Inference:

Generate the frames:

CUDA_VISIBLE_DEVICES=0 python inference.py --root_a ./data/cat/train_seg/ --root_b ./data/fox/train_seg/ --resize --no_hflip --out ../infer_cat_fox/ --load ../second_cat_fox/checkpoint_30000 --bs 1 --num_kp 14 --data_size 80 --affine --splitted

To video:

python gen_vid.py --img_path ../infer_cat_fox/ --prefix_b refined_ba_ --prefix_a b_ --out ./output/ --end_a 80 --same_length --resize --w 256 --h 157 --prefix_d refined_ab_ --prefix_c a_ --name infer_cat_fox_10.avi --fps 10.0

Citation

If you found this work useful, please cite:

@article{mokady2021jokr, title={JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting}, author={Mokady, Ron and Tzaban, Rotem and Benaim, Sagie and Bermano, Amit H and Cohen-Or, Daniel}, journal={arXiv preprint arXiv:2106.09679}, year={2021} }

Contact

For further questions, [email protected] .

Acknowledgements

This implementation is heavily based on https://github.com/AliaksandrSiarohin/first-order-model and https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix . Examples were borrowed from YouTube-Vos train set.

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022