Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

Related tags

Deep LearningJOKR
Overview

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting

Pytorch implementation for the paper "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting".

Project Webpage | Arxiv

Abstract:

The task of unsupervised motion retargeting in videos has seen substantial advancements through the use of deep neural networks. While early works concentrated on specific object priors such as a human face or body, recent work considered the unsupervised case. When the source and target videos, however, are of different shapes, current methods fail. To alleviate this problem, we introduce JOKR - a JOint Keypoint Representation that captures the motion common to both the source and target videos, without requiring any object prior or data collection. By employing a domain confusion term, we enforce the unsupervised keypoint representations of both videos to be indistinguishable. This encourages disentanglement between the parts of the motion that are common to the two domains, and their distinctive appearance and motion, enabling the generation of videos that capture the motion of the one while depicting the style of the other. To enable cases where the objects are of different proportions or orientations, we apply a learned affine transformation between the JOKRs. This augments the representation to be affine invariant, and in practice broadens the variety of possible retargeting pairs. This geometry-driven representation enables further intuitive control, such as temporal coherence and manual editing. Through comprehensive experimentation, we demonstrate the applicability of our method to different challenging cross-domain video pairs. We evaluate our method both qualitatively and quantitatively, and demonstrate that our method handles various cross-domain scenarios, such as different animals, different flowers, and humans. We also demonstrate superior temporal coherency and visual quality compared to state-of-the-art alternatives, through statistical metrics and a user study.

Code:

Prerequisites:

Python 3.6

pip install -r requirements.txt

Train:

First step training:

CUDA_VISIBLE_DEVICES=0 python train_first_stage.py --root_a ./data/cat/train_seg/ --root_b ./data/fox/train_seg/ --resize --out ./first_cat_fox/ --bs 8 --num_kp 14 --lambda_disc 1.0 --delta 0.12 --lambda_l2 50.0 --lambda_pred 1.0 --lambda_sep 4.0 --lambda_sill 0.5 --affine

Second step training:

CUDA_VISIBLE_DEVICES=0 python train_second_stage.py --root_a data/cat/train_seg/ --root_b data/fox/train_seg/ --resize --no_hflip --out ../second_cat_fox/ --load ../first_cat_fox/checkpoint_45000 --bs 6 --num_kp 14 --lambda_vgg 1.0

If droplet artifact occur, please reduce the perceptual loss:

--lambda_vgg 0.5

Pytorch Dataloader might create too many threads - deacreasing CPU performance. This can be solved using:

MKL_NUM_THREADS=8

Inference:

Generate the frames:

CUDA_VISIBLE_DEVICES=0 python inference.py --root_a ./data/cat/train_seg/ --root_b ./data/fox/train_seg/ --resize --no_hflip --out ../infer_cat_fox/ --load ../second_cat_fox/checkpoint_30000 --bs 1 --num_kp 14 --data_size 80 --affine --splitted

To video:

python gen_vid.py --img_path ../infer_cat_fox/ --prefix_b refined_ba_ --prefix_a b_ --out ./output/ --end_a 80 --same_length --resize --w 256 --h 157 --prefix_d refined_ab_ --prefix_c a_ --name infer_cat_fox_10.avi --fps 10.0

Citation

If you found this work useful, please cite:

@article{mokady2021jokr, title={JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting}, author={Mokady, Ron and Tzaban, Rotem and Benaim, Sagie and Bermano, Amit H and Cohen-Or, Daniel}, journal={arXiv preprint arXiv:2106.09679}, year={2021} }

Contact

For further questions, [email protected] .

Acknowledgements

This implementation is heavily based on https://github.com/AliaksandrSiarohin/first-order-model and https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix . Examples were borrowed from YouTube-Vos train set.

This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022