The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

Overview

TensorFlow Requirement: 1.x TensorFlow 2 Not Supported

TNDM - Targeted Neural Dynamical Modeling

Note: This code is no longer being updated. The official re-implementation can be found at: https://github.com/HennigLab/tndm.

The code in this repository implements the models used in the Neurips 2021 paper, "Targeted Neural Dynamical Modeling". It also houses code from the baseline model, "Latent Factor Analysis via Dynamical Systems" (borrowed from https://github.com/lfads/models/tree/master/research/lfads). Latent dynamics models have emerged as powerful tools for modeling and interpreting neural population activity. Recently, there has been a focus on incorporating simultaneously measured behaviour into these models to further disentangle sources of neural variability in their latent space. These approaches, however, are limited in their ability to capture the underlying neural dynamics (e.g. linear) and in their ability to relate the learned dynamics back to the observed behaviour (e.g. no time lag). To this end, we introduce Targeted Neural Dynamical Modeling (TNDM), a nonlinear state-space model that jointly models the neural activity and external behavioural variables. TNDM decomposes neural dynamics into behaviourally relevant and behaviourally irrelevant dynamics; the relevant dynamics are used to reconstruct the behaviour through a flexible linear decoder and both sets of dynamics are used to reconstruct the neural activity through a linear decoder with no time lag. We implement TNDM as a sequential variational autoencoder and validate it on recordings taken from the premotor and motor cortex of a monkey performing a center-out reaching task. We show that TNDM is able to learn low-dimensional latent dynamics that are highly predictive of behaviour without sacrificing its fit to the neural data.

Prerequisites

The code is written in Python 2.7.6. The other prerequisites are:

Getting started

Before starting, run the following:

$ export PYTHONPATH=$PYTHONPATH:/path/to/your/directory/tndm_paper/

where "path/to/your/directory" is replaced with the path to the tndm_paper repository (you can get this path by using the pwd command). This allows the nested directories to access modules from their parent directory.

Train an TNDM model

For a full list of flags, their descriptions, and their default values, refer to the top of run_tndm_double.py. We trained all of our models using the run_tndm_double_paper.sh bash script which allows for modifying important values.

Finally, you can view the results in the tndm_eval_matt_data-M1.ipynb file.

Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022