Codebase of deep learning models for inferring stability of mRNA molecules

Overview

Kaggle OpenVaccine Models

Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challenge and accompanying manuscript "Predictive models of RNA degradation through dual crowdsourcing", Wayment-Steele et al (2021) (full citation when available).

Models contained here are:

"Nullrecurrent": A reconstruction of winning solution by Jiayang Gao. Link to original notebooks provided below.

"DegScore-XGBoost": A model based the original DegScore model and XGBoost.

NB on other historic names for models

  • The Nullrecurrent model was called "OV" model in some instances and the .h5 model files for the Nullrecurrent model are labeled "ov".

  • The DegScore-XGBoost model was called the "BT" model in Eterna analysis.

Organization

scripts: Python scripts to perform inference.

notebooks: Python notebooks to perform inference.

model_files: Store .h5 model files used at inference time.

data: Data corresponding to Kaggle challenge and to subsequent tests on mRNAs.

data/Kaggle_RYOS_data

This directory contains training set and test sets in .csv and in .json form.

Kaggle_RYOS_trainset_prediction_output_Sep2021.txt contains predictions from the Nullrecurrent code in this repository.

Model MCRMSEs were evaluated by uploading submissions to the Kaggle competition website at https://www.kaggle.com/c/stanford-covid-vaccine.

data/mRNA_233x_data

This directory contains original data and scripts to reproduce model analysis from manuscript.

Because all the original formats are slightly different, the reformat_*.py scripts read in the original formats and reformats them in two forms for each prediction: "FULL" and "PCR" in the directory formatted_predictions.

"FULL" is per-nucleotide predictions for all the nucleotides. "PCR" has had the regions outside the RT-PCR sequencing set to NaN.

python collate_predictions.py reads in all the data and outputs all_predictions_233x.csv

RegenerateFigure5.ipynb reproduces the final scatterplot comparisons.

posthoc_code_predictions contains predictions from the Nullrecurrent code model contained in this repository. To generate these predictions use the sequence file in the mRNA_233x_data folder and run the following command(s):

python scripts/nullrecurrent_inference.py -d deg_Mg_pH10 -i 233_sequences.txt -o 233x_nullrecurrent_output_Oct2021_deg_Mg_50C.txt,

etc.

Dependencies

Install via pip install requirements.txt or conda install --file requirements.txt.

Not pip-installable: EternaFold, Vienna, and Arnie, see below.

Setup

  1. Install git-lfs (best to do before git-cloning this KaggleOpenVaccine repo).

  2. Install EternaFold (the nullrecurrent model uses this), available for free noncommercial use here.

  3. Install ViennaRNA (the DegScore-XGBoost model uses this), available here.

  4. Git clone Arnie, which wraps EternaFold in python and allows RNA thermodynamic calculations across many packages. Follow instructions here to link EternaFold to it.

  5. Add path to this repository as KOV_PATH (so that script can find path to stored model files):

export KOV_PATH='/path/to/KaggleOpenVaccine'

Usage

To run the nullrecurrent winning solution on one construct, given in example.txt:

CGC

Run

python scripts/nullrecurrent_inference.py [-d deg] -i example.txt -o predict.txt

where the deg is one of the following options

deg_Mg_pH10
deg_pH10
deg_Mg_50C
deg_50C

Similarly, for the DegScore-XGBoost model :

python scripts/degscore-xgboost_inference.py -i example.txt -o predict.txt

This write a text file of output predictions to predict.txt:

(Nullrecurrent output)

2.1289976365, 2.650808962, 2.1869660805000004

(DegScore-XGBoost output)

0.2697107, 0.37091506, 0.48528114

A note on energy model versions

The predictions in the Kaggle competition and for the manuscript were performed with EternaFold parameters and CONTRAfold-SE code. The currently available EternaFold code will result in slightly different values. For more on the difference, see the EternaFold README.

Individual Kaggle Solutions

This code is based on the winning solution for the Open Vaccine Kaggle Competition Challenge. The competition can be found here:

https://www.kaggle.com/c/stanford-covid-vaccine/overview

This code is also the supplementary material for the Kaggle Competition Solution Paper. The individual Kaggle writeups for the top solutions that have been featured in that paper can be found in the following table:

Team Name Team Members Rank Link to the solution
Nullrecurrent Jiayang Gao 1 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189620
Kazuki ** 2 Kazuki Onodera, Kazuki Fujikawa 2 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189709
Striderl Hanfei Mao 3 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189574
FromTheWheel & Dyed & StoneShop Gilles Vandewiele, Michele Tinti, Bram Steenwinckel 4 https://www.kaggle.com/group16/covid-19-mrna-4th-place-solution
tito Takuya Ito 5 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189691
nyanp Taiga Noumi 6 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189241
One architecture Shujun He 7 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189564
ishikei Keiichiro Ishi 8 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/190314
Keep going to be GM Youhan Lee 9 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189845
Social Distancing Please Fatih Öztürk,Anthony Chiu,Emin Ozturk 11 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189571
The Machine Karim Amer,Mohamed Fares 13 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189585
You might also like...
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art methods on major benchmarks like KITTI(ViP) and nuScenes(CBGS).

Comments
  • HW edits

    HW edits

    Changes:

    Remove hardcoded paths in scripts

    Remove tmp csv output files for nullrecurrent

    Rename to reflect model naming in paper "nullrecurrent"

    Reorganize example inputs and outputs

    Update README

    Add requirements file

    opened by HWaymentSteele 0
Releases(v1.0)
  • v1.0(Sep 30, 2022)

Owner
Eternagame
Eternagame
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022