Codebase of deep learning models for inferring stability of mRNA molecules

Overview

Kaggle OpenVaccine Models

Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challenge and accompanying manuscript "Predictive models of RNA degradation through dual crowdsourcing", Wayment-Steele et al (2021) (full citation when available).

Models contained here are:

"Nullrecurrent": A reconstruction of winning solution by Jiayang Gao. Link to original notebooks provided below.

"DegScore-XGBoost": A model based the original DegScore model and XGBoost.

NB on other historic names for models

  • The Nullrecurrent model was called "OV" model in some instances and the .h5 model files for the Nullrecurrent model are labeled "ov".

  • The DegScore-XGBoost model was called the "BT" model in Eterna analysis.

Organization

scripts: Python scripts to perform inference.

notebooks: Python notebooks to perform inference.

model_files: Store .h5 model files used at inference time.

data: Data corresponding to Kaggle challenge and to subsequent tests on mRNAs.

data/Kaggle_RYOS_data

This directory contains training set and test sets in .csv and in .json form.

Kaggle_RYOS_trainset_prediction_output_Sep2021.txt contains predictions from the Nullrecurrent code in this repository.

Model MCRMSEs were evaluated by uploading submissions to the Kaggle competition website at https://www.kaggle.com/c/stanford-covid-vaccine.

data/mRNA_233x_data

This directory contains original data and scripts to reproduce model analysis from manuscript.

Because all the original formats are slightly different, the reformat_*.py scripts read in the original formats and reformats them in two forms for each prediction: "FULL" and "PCR" in the directory formatted_predictions.

"FULL" is per-nucleotide predictions for all the nucleotides. "PCR" has had the regions outside the RT-PCR sequencing set to NaN.

python collate_predictions.py reads in all the data and outputs all_predictions_233x.csv

RegenerateFigure5.ipynb reproduces the final scatterplot comparisons.

posthoc_code_predictions contains predictions from the Nullrecurrent code model contained in this repository. To generate these predictions use the sequence file in the mRNA_233x_data folder and run the following command(s):

python scripts/nullrecurrent_inference.py -d deg_Mg_pH10 -i 233_sequences.txt -o 233x_nullrecurrent_output_Oct2021_deg_Mg_50C.txt,

etc.

Dependencies

Install via pip install requirements.txt or conda install --file requirements.txt.

Not pip-installable: EternaFold, Vienna, and Arnie, see below.

Setup

  1. Install git-lfs (best to do before git-cloning this KaggleOpenVaccine repo).

  2. Install EternaFold (the nullrecurrent model uses this), available for free noncommercial use here.

  3. Install ViennaRNA (the DegScore-XGBoost model uses this), available here.

  4. Git clone Arnie, which wraps EternaFold in python and allows RNA thermodynamic calculations across many packages. Follow instructions here to link EternaFold to it.

  5. Add path to this repository as KOV_PATH (so that script can find path to stored model files):

export KOV_PATH='/path/to/KaggleOpenVaccine'

Usage

To run the nullrecurrent winning solution on one construct, given in example.txt:

CGC

Run

python scripts/nullrecurrent_inference.py [-d deg] -i example.txt -o predict.txt

where the deg is one of the following options

deg_Mg_pH10
deg_pH10
deg_Mg_50C
deg_50C

Similarly, for the DegScore-XGBoost model :

python scripts/degscore-xgboost_inference.py -i example.txt -o predict.txt

This write a text file of output predictions to predict.txt:

(Nullrecurrent output)

2.1289976365, 2.650808962, 2.1869660805000004

(DegScore-XGBoost output)

0.2697107, 0.37091506, 0.48528114

A note on energy model versions

The predictions in the Kaggle competition and for the manuscript were performed with EternaFold parameters and CONTRAfold-SE code. The currently available EternaFold code will result in slightly different values. For more on the difference, see the EternaFold README.

Individual Kaggle Solutions

This code is based on the winning solution for the Open Vaccine Kaggle Competition Challenge. The competition can be found here:

https://www.kaggle.com/c/stanford-covid-vaccine/overview

This code is also the supplementary material for the Kaggle Competition Solution Paper. The individual Kaggle writeups for the top solutions that have been featured in that paper can be found in the following table:

Team Name Team Members Rank Link to the solution
Nullrecurrent Jiayang Gao 1 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189620
Kazuki ** 2 Kazuki Onodera, Kazuki Fujikawa 2 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189709
Striderl Hanfei Mao 3 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189574
FromTheWheel & Dyed & StoneShop Gilles Vandewiele, Michele Tinti, Bram Steenwinckel 4 https://www.kaggle.com/group16/covid-19-mrna-4th-place-solution
tito Takuya Ito 5 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189691
nyanp Taiga Noumi 6 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189241
One architecture Shujun He 7 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189564
ishikei Keiichiro Ishi 8 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/190314
Keep going to be GM Youhan Lee 9 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189845
Social Distancing Please Fatih Öztürk,Anthony Chiu,Emin Ozturk 11 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189571
The Machine Karim Amer,Mohamed Fares 13 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189585
You might also like...
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art methods on major benchmarks like KITTI(ViP) and nuScenes(CBGS).

Comments
  • HW edits

    HW edits

    Changes:

    Remove hardcoded paths in scripts

    Remove tmp csv output files for nullrecurrent

    Rename to reflect model naming in paper "nullrecurrent"

    Reorganize example inputs and outputs

    Update README

    Add requirements file

    opened by HWaymentSteele 0
Releases(v1.0)
  • v1.0(Sep 30, 2022)

Owner
Eternagame
Eternagame
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022