Codebase of deep learning models for inferring stability of mRNA molecules

Overview

Kaggle OpenVaccine Models

Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challenge and accompanying manuscript "Predictive models of RNA degradation through dual crowdsourcing", Wayment-Steele et al (2021) (full citation when available).

Models contained here are:

"Nullrecurrent": A reconstruction of winning solution by Jiayang Gao. Link to original notebooks provided below.

"DegScore-XGBoost": A model based the original DegScore model and XGBoost.

NB on other historic names for models

  • The Nullrecurrent model was called "OV" model in some instances and the .h5 model files for the Nullrecurrent model are labeled "ov".

  • The DegScore-XGBoost model was called the "BT" model in Eterna analysis.

Organization

scripts: Python scripts to perform inference.

notebooks: Python notebooks to perform inference.

model_files: Store .h5 model files used at inference time.

data: Data corresponding to Kaggle challenge and to subsequent tests on mRNAs.

data/Kaggle_RYOS_data

This directory contains training set and test sets in .csv and in .json form.

Kaggle_RYOS_trainset_prediction_output_Sep2021.txt contains predictions from the Nullrecurrent code in this repository.

Model MCRMSEs were evaluated by uploading submissions to the Kaggle competition website at https://www.kaggle.com/c/stanford-covid-vaccine.

data/mRNA_233x_data

This directory contains original data and scripts to reproduce model analysis from manuscript.

Because all the original formats are slightly different, the reformat_*.py scripts read in the original formats and reformats them in two forms for each prediction: "FULL" and "PCR" in the directory formatted_predictions.

"FULL" is per-nucleotide predictions for all the nucleotides. "PCR" has had the regions outside the RT-PCR sequencing set to NaN.

python collate_predictions.py reads in all the data and outputs all_predictions_233x.csv

RegenerateFigure5.ipynb reproduces the final scatterplot comparisons.

posthoc_code_predictions contains predictions from the Nullrecurrent code model contained in this repository. To generate these predictions use the sequence file in the mRNA_233x_data folder and run the following command(s):

python scripts/nullrecurrent_inference.py -d deg_Mg_pH10 -i 233_sequences.txt -o 233x_nullrecurrent_output_Oct2021_deg_Mg_50C.txt,

etc.

Dependencies

Install via pip install requirements.txt or conda install --file requirements.txt.

Not pip-installable: EternaFold, Vienna, and Arnie, see below.

Setup

  1. Install git-lfs (best to do before git-cloning this KaggleOpenVaccine repo).

  2. Install EternaFold (the nullrecurrent model uses this), available for free noncommercial use here.

  3. Install ViennaRNA (the DegScore-XGBoost model uses this), available here.

  4. Git clone Arnie, which wraps EternaFold in python and allows RNA thermodynamic calculations across many packages. Follow instructions here to link EternaFold to it.

  5. Add path to this repository as KOV_PATH (so that script can find path to stored model files):

export KOV_PATH='/path/to/KaggleOpenVaccine'

Usage

To run the nullrecurrent winning solution on one construct, given in example.txt:

CGC

Run

python scripts/nullrecurrent_inference.py [-d deg] -i example.txt -o predict.txt

where the deg is one of the following options

deg_Mg_pH10
deg_pH10
deg_Mg_50C
deg_50C

Similarly, for the DegScore-XGBoost model :

python scripts/degscore-xgboost_inference.py -i example.txt -o predict.txt

This write a text file of output predictions to predict.txt:

(Nullrecurrent output)

2.1289976365, 2.650808962, 2.1869660805000004

(DegScore-XGBoost output)

0.2697107, 0.37091506, 0.48528114

A note on energy model versions

The predictions in the Kaggle competition and for the manuscript were performed with EternaFold parameters and CONTRAfold-SE code. The currently available EternaFold code will result in slightly different values. For more on the difference, see the EternaFold README.

Individual Kaggle Solutions

This code is based on the winning solution for the Open Vaccine Kaggle Competition Challenge. The competition can be found here:

https://www.kaggle.com/c/stanford-covid-vaccine/overview

This code is also the supplementary material for the Kaggle Competition Solution Paper. The individual Kaggle writeups for the top solutions that have been featured in that paper can be found in the following table:

Team Name Team Members Rank Link to the solution
Nullrecurrent Jiayang Gao 1 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189620
Kazuki ** 2 Kazuki Onodera, Kazuki Fujikawa 2 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189709
Striderl Hanfei Mao 3 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189574
FromTheWheel & Dyed & StoneShop Gilles Vandewiele, Michele Tinti, Bram Steenwinckel 4 https://www.kaggle.com/group16/covid-19-mrna-4th-place-solution
tito Takuya Ito 5 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189691
nyanp Taiga Noumi 6 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189241
One architecture Shujun He 7 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189564
ishikei Keiichiro Ishi 8 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/190314
Keep going to be GM Youhan Lee 9 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189845
Social Distancing Please Fatih Öztürk,Anthony Chiu,Emin Ozturk 11 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189571
The Machine Karim Amer,Mohamed Fares 13 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189585
You might also like...
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art methods on major benchmarks like KITTI(ViP) and nuScenes(CBGS).

Comments
  • HW edits

    HW edits

    Changes:

    Remove hardcoded paths in scripts

    Remove tmp csv output files for nullrecurrent

    Rename to reflect model naming in paper "nullrecurrent"

    Reorganize example inputs and outputs

    Update README

    Add requirements file

    opened by HWaymentSteele 0
Releases(v1.0)
  • v1.0(Sep 30, 2022)

Owner
Eternagame
Eternagame
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022