Codebase of deep learning models for inferring stability of mRNA molecules

Overview

Kaggle OpenVaccine Models

Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challenge and accompanying manuscript "Predictive models of RNA degradation through dual crowdsourcing", Wayment-Steele et al (2021) (full citation when available).

Models contained here are:

"Nullrecurrent": A reconstruction of winning solution by Jiayang Gao. Link to original notebooks provided below.

"DegScore-XGBoost": A model based the original DegScore model and XGBoost.

NB on other historic names for models

  • The Nullrecurrent model was called "OV" model in some instances and the .h5 model files for the Nullrecurrent model are labeled "ov".

  • The DegScore-XGBoost model was called the "BT" model in Eterna analysis.

Organization

scripts: Python scripts to perform inference.

notebooks: Python notebooks to perform inference.

model_files: Store .h5 model files used at inference time.

data: Data corresponding to Kaggle challenge and to subsequent tests on mRNAs.

data/Kaggle_RYOS_data

This directory contains training set and test sets in .csv and in .json form.

Kaggle_RYOS_trainset_prediction_output_Sep2021.txt contains predictions from the Nullrecurrent code in this repository.

Model MCRMSEs were evaluated by uploading submissions to the Kaggle competition website at https://www.kaggle.com/c/stanford-covid-vaccine.

data/mRNA_233x_data

This directory contains original data and scripts to reproduce model analysis from manuscript.

Because all the original formats are slightly different, the reformat_*.py scripts read in the original formats and reformats them in two forms for each prediction: "FULL" and "PCR" in the directory formatted_predictions.

"FULL" is per-nucleotide predictions for all the nucleotides. "PCR" has had the regions outside the RT-PCR sequencing set to NaN.

python collate_predictions.py reads in all the data and outputs all_predictions_233x.csv

RegenerateFigure5.ipynb reproduces the final scatterplot comparisons.

posthoc_code_predictions contains predictions from the Nullrecurrent code model contained in this repository. To generate these predictions use the sequence file in the mRNA_233x_data folder and run the following command(s):

python scripts/nullrecurrent_inference.py -d deg_Mg_pH10 -i 233_sequences.txt -o 233x_nullrecurrent_output_Oct2021_deg_Mg_50C.txt,

etc.

Dependencies

Install via pip install requirements.txt or conda install --file requirements.txt.

Not pip-installable: EternaFold, Vienna, and Arnie, see below.

Setup

  1. Install git-lfs (best to do before git-cloning this KaggleOpenVaccine repo).

  2. Install EternaFold (the nullrecurrent model uses this), available for free noncommercial use here.

  3. Install ViennaRNA (the DegScore-XGBoost model uses this), available here.

  4. Git clone Arnie, which wraps EternaFold in python and allows RNA thermodynamic calculations across many packages. Follow instructions here to link EternaFold to it.

  5. Add path to this repository as KOV_PATH (so that script can find path to stored model files):

export KOV_PATH='/path/to/KaggleOpenVaccine'

Usage

To run the nullrecurrent winning solution on one construct, given in example.txt:

CGC

Run

python scripts/nullrecurrent_inference.py [-d deg] -i example.txt -o predict.txt

where the deg is one of the following options

deg_Mg_pH10
deg_pH10
deg_Mg_50C
deg_50C

Similarly, for the DegScore-XGBoost model :

python scripts/degscore-xgboost_inference.py -i example.txt -o predict.txt

This write a text file of output predictions to predict.txt:

(Nullrecurrent output)

2.1289976365, 2.650808962, 2.1869660805000004

(DegScore-XGBoost output)

0.2697107, 0.37091506, 0.48528114

A note on energy model versions

The predictions in the Kaggle competition and for the manuscript were performed with EternaFold parameters and CONTRAfold-SE code. The currently available EternaFold code will result in slightly different values. For more on the difference, see the EternaFold README.

Individual Kaggle Solutions

This code is based on the winning solution for the Open Vaccine Kaggle Competition Challenge. The competition can be found here:

https://www.kaggle.com/c/stanford-covid-vaccine/overview

This code is also the supplementary material for the Kaggle Competition Solution Paper. The individual Kaggle writeups for the top solutions that have been featured in that paper can be found in the following table:

Team Name Team Members Rank Link to the solution
Nullrecurrent Jiayang Gao 1 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189620
Kazuki ** 2 Kazuki Onodera, Kazuki Fujikawa 2 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189709
Striderl Hanfei Mao 3 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189574
FromTheWheel & Dyed & StoneShop Gilles Vandewiele, Michele Tinti, Bram Steenwinckel 4 https://www.kaggle.com/group16/covid-19-mrna-4th-place-solution
tito Takuya Ito 5 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189691
nyanp Taiga Noumi 6 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189241
One architecture Shujun He 7 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189564
ishikei Keiichiro Ishi 8 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/190314
Keep going to be GM Youhan Lee 9 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189845
Social Distancing Please Fatih Öztürk,Anthony Chiu,Emin Ozturk 11 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189571
The Machine Karim Amer,Mohamed Fares 13 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189585
You might also like...
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art methods on major benchmarks like KITTI(ViP) and nuScenes(CBGS).

Comments
  • HW edits

    HW edits

    Changes:

    Remove hardcoded paths in scripts

    Remove tmp csv output files for nullrecurrent

    Rename to reflect model naming in paper "nullrecurrent"

    Reorganize example inputs and outputs

    Update README

    Add requirements file

    opened by HWaymentSteele 0
Releases(v1.0)
  • v1.0(Sep 30, 2022)

Owner
Eternagame
Eternagame
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022