All of the figures and notebooks for my deep learning book, for free!

Overview

"Deep Learning - A Visual Approach" by Andrew Glassner

This is the official repo for my book from No Starch Press.

Ordering the book

My book is called Deep Learning: A Visual Approach Click on the link to order it in physical or Ebook formats.

Free Bonus Chapters!

Three free bonus chapters! How to use scikit-learn for machine learning, and how to use Keras for deep learning. Free text, free notebooks, free figures, the whole thing! Just click here or click on the Bonus Chapters repo. The figures and notebooks are saved with all of the other figures and notebooks (see below).

Free Figures!

All the figures from my book, for free, in high-resolution PNG format. To help you search, there's a directory called Thumbnails which offers contact sheets of the figures, 20 per page.

All of these figures are released under the MIT license. This means you're free to use them any way you like, as long as you keep the copyright associated with them somehow. Use them for your classes, reports, papers, presentations, whatever you like!

You're not required to attribute me or the book if you use these images, but I'd appreciate it if you would.

Some figures include photographs. Many of these are by me, and I've given you permission to use them. All other photos are from Wikiart, Wikimedia, or Pixabay. The book provides a citation and URL to the source of each of these images. The first two sites state that their images are in the public domain. All images selected from Pixabay are labeled as released under the Creative Commons CC0 license, and explicitly state, "Free for commercial use. No attribution required."

Free Notebooks!

Jupyter notebooks for making many of the figures in the book.

Since the purpose of the notebooks was to make figures, rather than to serve as tutorials, they are only lightly commented, but they're meant to be readable. So I used longer but clearer variable names, and whenever I could I preferred clarity over most other concerns. This means that much of the code can be shortened, reorganized or otherwise refactored, and almost always it can be changed to be more compact, elegant, and faster. Feel free to dig in, optimize, convert to other languages, or otherwise play with the code.

All the notebooks are released under the MIT license. Informally, you're free to do pretty much anything with the code, including using it in your own projects, or even including it in commercial projects, as long as you keep my copyright along with the code. While I strove for accuracy and correctness, there is no warranty that the code is bug-free or fit for any purpose.

Some notebooks work with images. The images I used in the book are included with the notebooks. See the section below on Figures for details on their licensing, and see the book for the URL where each image may be found. All images without an explicit citation in the book are by the author, and are released under the MIT license.

Errata

A book of this size will inevitably have errors. For each error I'm aware of, I'll update the appropriate figure(s) and/or notebook(s), and then put a description of the error (along with a credit to the person who found it) in a plain-text file in the Errata folder.

Have Fun!

Owner
Andrew Glassner
Andrew Glassner
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021