All of the figures and notebooks for my deep learning book, for free!

Overview

"Deep Learning - A Visual Approach" by Andrew Glassner

This is the official repo for my book from No Starch Press.

Ordering the book

My book is called Deep Learning: A Visual Approach Click on the link to order it in physical or Ebook formats.

Free Bonus Chapters!

Three free bonus chapters! How to use scikit-learn for machine learning, and how to use Keras for deep learning. Free text, free notebooks, free figures, the whole thing! Just click here or click on the Bonus Chapters repo. The figures and notebooks are saved with all of the other figures and notebooks (see below).

Free Figures!

All the figures from my book, for free, in high-resolution PNG format. To help you search, there's a directory called Thumbnails which offers contact sheets of the figures, 20 per page.

All of these figures are released under the MIT license. This means you're free to use them any way you like, as long as you keep the copyright associated with them somehow. Use them for your classes, reports, papers, presentations, whatever you like!

You're not required to attribute me or the book if you use these images, but I'd appreciate it if you would.

Some figures include photographs. Many of these are by me, and I've given you permission to use them. All other photos are from Wikiart, Wikimedia, or Pixabay. The book provides a citation and URL to the source of each of these images. The first two sites state that their images are in the public domain. All images selected from Pixabay are labeled as released under the Creative Commons CC0 license, and explicitly state, "Free for commercial use. No attribution required."

Free Notebooks!

Jupyter notebooks for making many of the figures in the book.

Since the purpose of the notebooks was to make figures, rather than to serve as tutorials, they are only lightly commented, but they're meant to be readable. So I used longer but clearer variable names, and whenever I could I preferred clarity over most other concerns. This means that much of the code can be shortened, reorganized or otherwise refactored, and almost always it can be changed to be more compact, elegant, and faster. Feel free to dig in, optimize, convert to other languages, or otherwise play with the code.

All the notebooks are released under the MIT license. Informally, you're free to do pretty much anything with the code, including using it in your own projects, or even including it in commercial projects, as long as you keep my copyright along with the code. While I strove for accuracy and correctness, there is no warranty that the code is bug-free or fit for any purpose.

Some notebooks work with images. The images I used in the book are included with the notebooks. See the section below on Figures for details on their licensing, and see the book for the URL where each image may be found. All images without an explicit citation in the book are by the author, and are released under the MIT license.

Errata

A book of this size will inevitably have errors. For each error I'm aware of, I'll update the appropriate figure(s) and/or notebook(s), and then put a description of the error (along with a credit to the person who found it) in a plain-text file in the Errata folder.

Have Fun!

Owner
Andrew Glassner
Andrew Glassner
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023